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Abstract. Let G be a simple graph with vertex set V(G) = {v1,v2, . . . ,vn}. The elliptic Sombor
matrix of G, denoted by AESO(G), is defined as the n× n matrix whose (i, j)-entry is (di + dj)

√
d2

i + d2
j

if vi and vj are adjacent and 0 for another cases. Let the eigenvalues of the elliptic Sombor matrix
AESO(G) be ρ1 ≥ ρ2 ≥ . . . ≥ ρn which are the roots of the elliptic Sombor characteristic polynomial

∏n
i=1(ρ − ρi). The elliptic Sombor energy EESO of G is the sum of absolute values of the eigenvalues

of AESO(G). In this paper, we compute the elliptic Sombor characteristic polynomial and the elliptic
Sombor energy for some graph classes. We compute the elliptic Sombor energy of cubic graphs of
order 10 and as a consequence, we see that two k-regular graphs of the same order may have different
elliptic Sombor energy.

Keywords. elliptic Sombor matrix, elliptic Sombor energy, elliptic Sombor characteristic polyno-
mial, eigenvalues, regular graphs.
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1 Introduction

Let G = (V, E) be a simple graph, with vertex set V(G) = {v1,v2, . . . ,vn}. If two vertices
vi and vj of G are adjacent, then we use the notation vi ∼ vj. For vi ∈ V(G), the degree of the
vertex vi, denoted by di, is the number of the vertices adjacent to vi.

Let A(G) be adjacency matrix of G and λ1,λ2, . . . ,λn its eigenvalues. These are said to be
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the eigenvalues of the graph G and to form its spectrum [9]. The energy E(G) of the graph G
is defined as the sum of the absolute values of its eigenvalues

E(G) =
n

∑
i=1

|λi|.

Details and more information on graph energy can be found in [21,22,24,29]. There are many
kinds of graph energies, such as Randić energy [1,3,5,12,23], distance energy [33], incidence
energy [4], matching energy [7, 27] and Laplacian energy [11].

Sombor index is defined as SO(G) = ∑uv∈E(G)

√
d2

u + d2
v (see [19]). More details on Som-

bor index can be found in [2,6,8,10,13,17,28,30–32,34]. Recently, in [20], Gutman introduced
Sombor matrix of a graph G as ASO(G) = (rij)n×n, where

rij =

{√
d2

i + d2
j if vi ∼ vj

0 otherwise.

The eigenvalues of ASO(G) are denoted by ρ1 ≥ ρ2 ≥ . . . ≥ ρn, and are said to form the
Sombor spectrum of the graph G. The Sombor characteristic polynomial ϕSO(G,λ) is

ϕSO(G,λ) = det(λI − ASO(G)) =
n

∏
i=1

(λ − ρi),

and Sombor energy ESO(G) is

ESO(G) =
n

∑
i=1

|ρi|.

We refer the reader to [16, 18, 25, 26] for more details on Sombor energy.
In a recent paper (see [14]), the elliptic Sombor index of G is defined as

ESO(G) = ∑
uv∈E(G)

(du + dv)
√

d2
u + d2

v.

Motivated by the definition of the Sombor matrix, we define the elliptic Sombor matrix as
AESO(G) = (rij)n×n, and

rij =

{
(di + dj)

√
d2

i + d2
j if vi ∼ vj

0 otherwise.

The eigenvalues of AESO(G) are denoted by λ1 ≥ λ2 ≥ . . . ≥ λn, and are said to form
the elliptic Sombor spectrum of the graph G. The elliptic Sombor characteristic polynomial
ϕESO(G,λ) is

ϕESO(G,λ) = det(λI − AESO(G)) =
n

∏
i=1

(λ − λi),

and elliptic Sombor energy EESO(G) is
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EESO(G) =
n

∑
i=1

|λi|.

Two graphs G and H are said to be elliptic Sombor energy equivalent, or simply EESO-
equivalent, written G ∼ H, if EESO(G) = EESO(H). It is evident that the relation ∼ of be-
ing EESO-equivalence is an equivalence relation on the family G of graphs, and thus G is
partitioned into equivalence classes, called the EESO-equivalent. Given G ∈ G, let

[G] = {H ∈ G : H ∼ G}.

We call [G] the equivalence class determined by G. A graph G is said to be elliptic Sombor
energy unique, or simply EESO-unique, if [G] = {G}.

A graph G is called k-regular if all vertices have the same degree k. One of the famous
graphs is the Petersen graph which is a symmetric non-planar 3-regular graph of order 10.

There are exactly twenty one 3-regular graphs of order 10 [15]. In the study of elliptic
Sombor energy, it is natural to investigate the elliptic Sombor characteristic polynomial and
elliptic Sombor energy of cubic graphs of order 10 and check whether they recognized by
their elliptic Sombor energy among other 3-regular graphs with the same order. We denote
the Petersen graph by P.

In the next section we compute the elliptic Sombor energy of specific graphs. In Section 3,
we study the elliptic Sombor energy of cubic graphs of order 10. As a consequence we show
that the Petersen graph cannot be determined by its elliptic Sombor energy.

2 Elliptic Sombor energy of specific graphs

In this section, we study the elliptic Sombor characteristic polynomial and the elliptic
Sombor energy for certain graphs. Here we compute the elliptic Sombor characteristic poly-
nomial of paths and cycles.

Theorem 2.1. For every n ≥ 5, the elliptic Sombor characteristic polynomial of the path graph Pn

satisfy:
ϕESO(Pn,λ) = λ2Λn−2 − 90λΛn−3 + 2025Λn−4,

where for every k ≥ 3, Λk = λΛk−1 − 128Λk−2 with Λ1 = λ and Λ2 = λ2 − 8. Also the characteristic
polynomial of P2, P3 and P4 are λ2 − 8,λ3 − 90λ and λ4 − 218λ2 + 2025 respectively.

Proof. It is easy to see that the characteristic polynomial of P2 is λ2 − 8, Also for P3 is λ3 − 90λ
and for P4 is λ4 − 218λ2 + 2025. Now for every k ≥ 3 consider

Mk :=



λ −4
√

8 0 . . . 0 0
−4

√
8 λ −4

√
8 . . . 0 0

0 −4
√

8 λ . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . λ −4

√
8

0 0 0 . . . −4
√

8 λ


k×k

,
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and let Λk = det(Mk). One can easily check that Λk = λΛk−1 − 128Λk−2 . Now consider the path
graph Pn. Suppose that ϕESO(Pn,λ) = det(λI − AESO(Pn)). We have

ϕESO(Pn,λ) = det



λ −3
√

5 0 0 . . . 0 0 0
−3

√
5 0

0 0
0 0
... Mn−2

...
0 0
0 −3

√
5

0 0 0 0 . . . 0 −3
√

5 λ


n×n

.

So,

ϕESO(Pn,λ) = λdet


0

Mn−2
...
0

−3
√

5
0 . . . 0 −3

√
5 λ



+ 3
√

5det


−3

√
5 −4

√
8 . . . 0 0

0 0
... Mn−3

...
0 −3

√
5

0 0 . . . −3
√

5 λ

 .

And so,

ϕESO(Pn,λ) = λ

λΛn−2 + 3
√

5det


0

Mn−3
...
0
0

0 . . . 0 −4
√

8 −3
√

5





− 45det


0

Mn−3
...
0

−3
√

5
0 . . . 0 −3

√
5 λ


29
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Hence,

ϕESO(Pn,λ) = λ (λΛn−2 − 45Λn−3)

− 45

λΛn−3 + 3
√

5det


0

Mn−4
...
0
0

0 . . . 0 −4
√

8 −3
√

5




= λ (λΛn−2 − 45Λn−3)− 45 (λΛn−3 − 45Λn−4) ,

and therefore we have the result.

Theorem 2.2. For every n ≥ 3, the elliptic Sombor characteristic polynomial of the cycle graph Cn

satisfy:

ϕESO(Cn,λ) = λΛn−1 − 1024Λn−2 + ((−1)n+1)(2)(8
√

8)n,

where for every k ≥ 3, Λk = λΛk−1 − 8Λk−2 with Λ1 = λ and Λ2 = λ2 − 512.

Proof. Similar to the proof of Theorem 2.1, for every k ≥ 3, we consider

Mk :=



λ −8
√

8 0 0 . . . 0 0 0
−8

√
8 λ −8

√
8 0 . . . 0 0 0

0 −8
√

8 λ −8
√

8 . . . 0 0 0
0 0 −8

√
8 λ . . . 0 0 0

...
...

...
...

. . .
...

...
...

0 0 0 0 . . . λ −8
√

8 0
0 0 0 0 . . . −8

√
8 λ −8

√
8

0 0 0 0 . . . 0 −8
√

8 λ


k×k

,

and let Λk = det(Mk). We have Λk = λΛk−1 − 512Λk−2. Suppose that ϕESO(Cn,λ) = det(λI − AESO(Cn)).
We have

ϕESO(Cn,λ) = det



λ −8
√

8 0 0 . . . 0 0 −8
√

8
−8

√
8

0
0
... Mn−1

0
0

−8
√

8


n×n

.
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So,

ϕESO(Pn,λ) = λΛn−1 + 8
√

8det


−8

√
8 −8

√
8 0 . . . 0

0
... Mn−2

0
−8

√
8



+ (−1)n+1(−8
√

8)det


−8

√
8

0 Mn−2
...
0

−8
√

8 0 . . . 0 −8
√

8

 .

Hence,

ϕESO(Cn,λ) = λΛn−1 + 8
√

8
(
−8

√
8Λn−2 + (−1)n(−8

√
8)n−1

)
+ (−1)n+1(−8

√
8)
(
(−8

√
8)n−1 + (−1)n(−8

√
8)Λn−2

)
,

and therefore we have the result.

Now we consider to star graph Sn and find its elliptic Sombor characteristic polynomial
and elliptic Sombor energy. We need the following Lemma.

Lemma 2.3. [9] If M is a nonsingular square matrix, then

det
(

M N
P Q

)
= det(M)det(Q − PM−1N).

Theorem 2.4. For n ≥ 2,

(i) The elliptic Sombor characteristic polynomial of the star graph Sn = K1,n−1 is

ϕESO(Sn,λ)) = λn−2
(

λ2 − (n − 1)(n4 − 2n3 + 2n2)
)

.

(ii) The elliptic Sombor energy of Sn is

EESO(Sn) = 2n
√
(n − 1)(n2 − 2n + 2).

Proof. (i) One can easily check that the elliptic Sombor matrix of K1,n−1 is

AESO(Sn) = n
√

n2 − 2n + 2
(

01×1 J1×n−1

Jn−1×1 0n−1×n−1

)
.
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We have det(λI − AESO(Sn)) =

det

(
λ −n

√
n2 − 2n + 2J1×(n−1)

−n
√

n2 − 2n + 2J(n−1)×1 λIn−1

)
.

Using Lemma 2.3, det(λI − AESO(Sn)) =

λdet(λIn−1 − n
√

n2 − 2n + 2J(n−1)×1
1
λ
(n
√

n2 − 2n + 2J1×(n−1))).

Since J(n−1)×1 J1×(n−1) = Jn−1, so

det(λI − AESO(Sn)) = λdet(λIn−1 −
n2

λ
(n2 − 2n + 2)Jn−1)

= λ2−ndet(λ2 In−1 − n2(n2 − 2n + 2)Jn−1).

On the other hand, the eigenvalues of Jn−1 are n − 1 (once) and 0 (n − 2 times), the
eigenvalues of n2(n2 − 2n + 2)Jn−1 are (n − 1)(n2)(n2 − 2n + 2) (once) and 0 (n − 2
times). Therefore

ϕESO(Sn,λ)) = λn−2
(

λ2 − (n − 1)(n4 − 2n3 + 2n2)
)

.

(ii) It follows from Part (i).

We close this section by computing the elliptic Sombor characteristic polynomial of com-
plete bipartite graphs and their Sombor energy.

Theorem 2.5. For natural number m,n ̸= 1,

(i) The elliptic Sombor characteristic polynomial of complete bipartite graph Km,n is

ϕESO(Km,n,λ) = λm+n−2(λ2 − mn(m2 + n2)).

(ii) The elliptic Sombor energy of Km,n is 2(m + n)
√

mn(m2 + n2).

Proof. (i) It is easy to see that the elliptic Sombor matrix of Km,n is

(m + n)
√

m2 + n2
(

0m×m Jm×n

Jn×m 0n×n

)
.

Using Lemma 2.3 we have

det(λI − AESO(Km,n)) = det

(
λIm −(m + n)

√
m2 + n2 Jm×n

−(m + n)
√

m2 + n2 Jn×m λIn

)
.
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So det(λI − AESO(Km,n)) =

det(λIm)det(λIn − (m + n)
√

m2 + n2 Jn×m
1
λ

Im(m + n)
√

m2 + n2 Jm×n).

We know that Jn×m Jm×n = mJn. Therefore

det(λI − ASO(Km,n)) = λmdet(λIn −
1
λ

m(m2 + n2)(m + n)2 Jn)

= λm−ndet(λ2 In − m(m2 + n2)(m + n)2 Jn).

The eigenvalues of Jn are n (once) and 0 (n − 1 times). So the eigenvalues of m(m2 +

n2)(m + n)2 Jn are mn(m2 + n2)(m + n)2 (once) and 0 (n − 1 times). Hence

ϕSO(Km,n,λ) = λm+n−2(λ2 − mn(m2 + n2)(m + n)2).

(ii) It follows from Part (i).

3 Elliptic Sombor energy of k-regular graphs

In this section we consider 2-regular and 3-regular graphs. As a beginning of this section,
we have the following easy lemma:

Lemma 3.1. Let G = G1 ∪ G2 ∪ G3 ∪ . . . ∪ Gn. Then

(i) ϕESO(G) = ∏n
i=1 ϕESO(Gi).

(ii) EESO(G) = ∑n
i=1 EESO(Gi).

As an immediate result of Lemma 3.1, we have the following results:

Proposition 3.2. (i) If e = vrvr+1 ∈ E(Pn), then EESO(Pn − e) = EESO(Pr) + EESO(Ps), where
r + s = n.

(ii) If e ∈ E(Cn), (n ≥ 3), then EESO(Cn − e) = EESO(Pn).

(iii) Let Sn be the star on n vertices and e ∈ E(Sn). Then for any n ≥ 3,

EESO(Sn − e) = EESO(Sn−1).

Now consider the 2-regulars. Every 2-regular graph is a disjoint union of cycles. By The-
orem 2.2, we can find all the eigenvalues of elliptic Sombor matrix of cycle graphs. Therefore
by Lemma 3.1, we can find elliptic Sombor characteristic polynomial and elliptic Sombor en-
ergy of 2-regular graphs. Before we continue, we need the following easy result that is the
direct conclusion of the definition of elliptic Sombor energy:
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Figure 1. Cubic graphs of order 10.

Proposition 3.3. If G is a k-regular graph of order n, then

EESO(G) = (2k)nESO(G).

In [16], we showed that the Sombor energy of Kn is ESO(Kn) = 2(n − 1)2
√

2. So by Propo-
sition 3.3, we have the following result:

Theorem 3.4. For n ≥ 2, The elliptic Sombor energy of Kn is

EESO(Kn) = 2n+1(n − 1)n+2
√

2.

Now, we consider to the elliptic characteristic polynomial of 3-regular graphs of order 10.
Also we compute the elliptic Sombor energy of this class of graphs. There are exactly 21 cubic
graphs of order 10 given in Figure 1 (see [15]). We have the Sombor energy of these graphs
in table 1 as we computed them in [16]:

Gi ESO(Gi) Gi ESO(Gi) Gi ESO(Gi)

G1 64.161 G8 64.161 G15 62.767
G2 63.043 G9 64.981 G16 59.396
G3 62.880 G10 61.399 G17 67.882
G4 57.336 G11 62.375 G18 57.517
G5 60.638 G12 67.882 G19 66.096
G6 63.403 G13 61.000 G20 59.396
G7 63.969 G14 65.835 G21 50.911
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Table 1. Sombor energy of cubic graphs of order 10.

Now, by Using Table 1 and Proposition 3.3, we have the elliptic Sombor energy of cubic
graphs of order 10 up to three decimal places, as we see in Table 2:

Gi EESO(Gi) Gi EESO(Gi) Gi EESO(Gi)

G1 13858.776 G8 13858.776 G15 13557.672
G2 13617.288 G9 14035.896 G16 12829.536
G3 13582.080 G10 13262.184 G17 14662.512
G4 12384.576 G11 13473.000 G18 12423.672
G5 13097.808 G12 14662.512 G19 12980.736
G6 13695.048 G13 13176.000 G20 12829.536
G7 13758.336 G14 14220.360 G21 10996.776

Table 2. Elliptic Sombor energy of cubic graphs of order 10.

Proposition 3.5. Six cubic graphs of order 10 are not EESO-unique.

Proof. By Table 2, we see that [G1] = {G1, G8}, [G12] = {G12, G17} and [G16] = {G16, G20}.
Therefore, we have fifteen cubic graphs of order 10 which are ESO-unique.

As an immediate result of Proposition 3.5, we have:

Corollary 3.6. In general, two k-regular graphs of the same order may have different elliptic Sombor
energy.

Figure 2. Petersen graph

Theorem 3.7. Let G be the family of 3-regular graphs of order 10. For the Petersen graph P (Figure
2 or G17 in Figure 1), we have the following properties:

(i) The Petersen graph P is not EESO-unique in G.

(ii) The Petersen graph P has the maximum elliptic Sombor energy in G.
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Proof. (i) The Sombor matrix of P is

AESO(P) =



0 18
√

2 0 0 18
√

2 18
√

2 0 0 0 0
18
√

2 0 18
√

2 0 0 0 18
√

2 0 0 0
0 18

√
2 0 18

√
2 0 0 0 18

√
2 0 0

0 0 18
√

2 0 18
√

2 0 0 0 18
√

2 0
18
√

2 0 0 18
√

2 0 0 0 0 0 18
√

2
18
√

2 0 0 0 0 0 0 18
√

2 18
√

2 0
0 18

√
2 0 0 0 0 0 0 18

√
2 18

√
2

0 0 18
√

2 0 0 18
√

2 0 0 0 18
√

2
0 0 0 18

√
2 0 18

√
2 18

√
2 0 0 0

0 0 0 0 18
√

2 0 18
√

2 18
√

2 0 0



.

So

ϕSO(P,λ) = det(λI − ASO(P)) = (λ − 9
√

2)(λ + 6
√

2)4(λ − 3
√

2)5.

Therefore we have:

λ1 = 1994
√

2 , λ2 = λ3 = λ4 = λ5 = −1296
√

2 , λ6 = λ7 = λ8 = λ9 = λ10 = 648
√

2,

and so we have ESO(P) = 10368
√

2. By Table 2, we have P ∈ {G12, G17}. Therefore P is not
EESO-unique in G.

(ii) It follows from Part (i) and Table 2.

In [16], we have shown that if two connected k-regular graphs have the same Sombor
energy, then their adjacency matrices may have or have not the same permanent. Now by
Proposition 3.3, we have the following result:

Proposition 3.8. If two connected k-regular graphs have the same elliptic Sombor energy, then their
adjacency matrices may have or have not the same permanent.

Also in [16], we have shown that if two graphs have the same permanent, then we can
not conclude that they have same Sombor energy. Consequently, if we have two graphs with
the same permanent, then we can not conclude that they have same elliptic Sombor energy.

We think that the elliptic Sombor energy of no graph is integer. We end this section with
the following conjecture:

Conjecture 3.9. There is no graph with integer-valued elliptic Sombor energy.

4 Conclusions

In this paper we introduced the elliptic Sombor matrix and the elliptic Sombor energy of a
graph G. We computed the elliptic Sombor characteristic polynomial and the elliptic Sombor
energy for some graph classes. Also, we studied the elliptic Sombor energy of cubic graphs
of order 10.
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