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Automorphism group of a graph constructed from a lattice
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Abstract. Let L be a lattice and S be a ∧-closed subset of L. The graph ΓS(L) is a simple graph
with all elements of L as vertex set and two distinct vertex x,y are adjacent if and only if x ∨ y ∈ S. In
this paper, we verify the automorphism group of ΓS(L) and the relation by automorphism group of
the lattice L. Also we study some properties of the graph ΓS(L), where S is a prime filter or an ideal
such as the perfect maching.
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1 Introduction

In last decade, lot of mathematicians investigate the graphs associated to various alge-
braice structures, such as the zero divisor graphs of rings, ordered structures et. al [2,6,7,12].

In [9, 10] authores discuss some properties of the graph ΓS(L) which is derived from any
finite lattice and determine the realizability of it. In this paper, we determine the group
automorphism of ΓS(L) for some especially cases and the relation of it by the automorphism
of the lattice L. Furthermore in Section 2, we study some properties of the graph ΓS(L), where
S is aprime filter or an ideal.

Now we recall some definitions of Lattice Theory from [4, 5].
In this paper L means finite bounded lattice. For two distinct elements x,y of the lattice
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L, if x < y and there is no element z in L such that x < z < y, we say that y covers x and write
x ≺ y. In bounded lattice L an element p ∈ L is called an atom if 0 ≺ p, also an element m ∈ L
is called a coatom of L if m ≺ 1. The set of all coatoms of L is denoted by Coatom(L) and the
set of atoms of L by Atom(L). An element x ∈ L is called a join irredusible if x = a ∨ b implies
that x = a or x = b. Dually, we have the concept of a meet irreducible element.

A nonempty subset I of a lattice L is called an ideal if a,b ∈ I implies a ∨ b ∈ I and for any
a ∈ I and b ∈ L, a ∧ b ∈ I. A proper ideal I of a lattice is called prime if a,b ∈ L and a ∧ b ∈ I
imply a ∈ I or b ∈ I. Dually, the concept of filter and prime filter are defined.

Let L and L′ be two lattices. A mapping θ : L −→ L′ is called a homomorphism if for any
a,b ∈ L, θ(a ∨ b) = θ(a)∨ θ(b) and θ(a ∧ b) = θ(a)∧ θ(b). If the map θ is also bijective, we say
that θ is an isomorphism. An isomorphic from L to itself is called automorphism and the set
of all automorphisms of the lattice L is denoted by Aut(L).

Let G be an undirected simple graph with vertex set V(G). The notation {a,b} ∈ E(G)

means that two vertices a and b are adjacent in G. The notation Kn is used for complete
graph with n vertices.

The complement of G is a graph denoted by G with the same vertex set of G and two
vertices in G are adjacent if and only if they are not adjacent in G. For e = {x,y} ∈ E, G − e is
a new graph obtained from graph G by removing the edge e.

An independent edge set in the graph G is a set of edges without common vertices. An
independent edge set is also called a matching. An independent edge set M is called perfect
matching, if every vertex of G is incident to exactly one edge of M. The size of the largest
independent edge set in the graph G is called matching number of G and denoted by m(G).

We recall some graph operations from [8].
Let G and H be two graphs whose the vertex sets are disjoint, the disjoint union G + H is

a graph which V(G + H) = V(G)∪V(H) and E(G + H) = E(G)∪ E(H). Also the join graph
G ⊕ H is isomorphic Ḡ + H̄.

A permutation ϕ on the set of vertices V(G) is called a graph automorphism of G, if it
is satisfying the property that {a,b} ∈ E(G) if and only if {ϕ(a),ϕ(b)} ∈ E(G). All graph
automorphisms of the graph G is denoted by Aut(G). The symmetric group consisting of all
permutations of n elements is represented by Sn. See [3] for more details.

Theorem 1.1. ([11, Theorem 2.4]) For any graph G, Aut(G) = Aut(Ḡ).

Theorem 1.2. ([11, Theorem 1.6]) The set Aut(G) of all graph automorphisms of a graph G
forms a group under function composition.

Theorem 1.3. ([11, Theorem 4.1]) The automorphism group of the complete graph on n ver-
tices, Aut(Kn) is isomorphic to Sn.

Theorem 1.4. ([11, Theorem 4.2]) The automorphism group of the complete graph on n ver-
tices with any single edge removed is isomorphic to S2 × Sn−2.
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Theorem 1.5. ([11, Theorem 4.3]) The automorphism group of the complete graph on n ver-
tices with two adjacent edges removed is isomorphic to S1 × S2 × Sn−3.

In graph theory, the hamiltonian path is a path that visits each vertex presicely once. A
hamiltonian graph is a graph which contains a hamiltonian cycle, otherwise it is called non-
hamiltonian. An Eulerian path in the graph G is a path that visits each edge exactely once.
The graph G is called Eulerian if it contains an Eulerian path which starts and ends on the
same vertex. We recall two following theorem about hamiltonian and Eulerian graph [3].

Theorem 1.6. The graph G is Eulerian if and only if for every v ∈ V(G), deg(v) is even.

Theorem 1.7. If for every v ∈ V(G), deg(v) ≥ n
2 , then the graph G is hamiltonian.

2. The group automorphism of ΓS(L)

In this section we investigate the group automorphism of ΓS(L) for some especioally
cases.

Proposition 2.1. If S = L or S = L \ {0}, then Aut(ΓS(L)) is isomorphic to Sn.

Proof. The proof is straightforward by [1, Proposition 2.4] and Theorem 1.3.

Proposition 2.2. Let L be a lattice with at most two atoms. Consider S = L \ {p} or S =

L \ {0, p} for some meet-irreducible atom p of L, then Aut(ΓS(L)) is isomorphic to S2 × Sn−2.

Proof. Assume that S = L \ {p} or S = L \ {0, p}. By [9, Theorem 3.8], ΓS(L) = Kn − e which
e = {0, p}. Then the proof complete by Theorem 1.4.

Proposition 2.3. Suppose that the lattice L has at most three atoms. If S = L \ {p1, p2} or
S = L \ {0, p1, p2} for two meet-irreducible elements p1, p2 ∈ Atom(L), then Aut(ΓS(L)) is
isomorphic to S1 × S2 × Sn−3.

Proof. Suppose that S = L \ {p1, p2} or S = L \ {0, p1, p2}. Then S is a ∧-closed subset of L
in these cases and the graph ΓS(L) can be defined. One can easily chek that ΓS(L) = Kn −
{e1, e2}, which ei = {0, pi}. Hence, the result follows from Theorem 1.5.

Proposition 2.4. Assume that the lattice L has at most four atoms. If S = L \ {p1, p2, p3} or S =

L \ {0, p1, p2, p3} for three meet-irreducible elements p1, p2, p3 ∈ Atom(L), then Aut(ΓS(L)) is
isomorphic to S3 × Sn−3.
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Proof. Assume that S = L \ {p1, p2, p3} or S = L \ {0, p1, p2, p3}. Thus S is a ∧-closed subset of
L in these cases, so the graph ΓS(L) can be defined. Also the graph ΓS(L) = Kn − {e1, e2, e3},
which ei = {0, pi}. By Theorem 1.1, Aut(ΓS(L)) = Aut(ΓS(L)) = Aut(Kn−3 ∪ S3) = Sn−3 ×
S3.

In view of Proposition 2.4, we have the following theorem.

Theorem 2.5. Let L be a lattice and |Atom(L)| ≥ k. If S= L \ {p1, p2, . . . , pk} for meet-irreducible
elements p1, p2, . . . , pk ∈ Atom(L), then Aut(ΓS(L)) is isomorphic to Sk × Sn−k.

Proof. Let S = L \ {p1, p2, . . . , pk} for meet-irreducible elements p1, p2, . . . , pk ∈ Atom(L). Thus
S is a ∧-closed subset of L and the graph ΓS(L) can be defined. Also the graph ΓS(L) =
Kn − {e1, e2, . . . , ek}, which ei = {0, pi}, for 1 ≤ i ≤ k. Hence, by Theorem 1.1, Aut(ΓS(L)) =
Aut(ΓS(L)) = Aut(Kn−k ∪ Sk) = Aut(Kn−k)× Aut(Sk) = Sn−k × Sk.

Theorem 2.6. If S is an ideal of the lattice L, then Aut(ΓS(L)) = S|S| × S|Sc|.

Proof. Let S be an ideal of the lattice L. By [10, Theorem 2.7], ΓS(L) = K|S| + K|Sc|, so by
Theorem 1.3, Aut(ΓS(L)) = S|S| × S|Sc|.

Theorem 2.7. If S is a prime filter of the lattice L, then Aut(ΓS(L)) = S|S| × S|Sc|.

Proof. Let S be a prime filter of the lattice L. By [10, Theorem 2.9], ΓS(L) = K|S| ⊕ K|Sc|, and

by Theorem 1.1, Aut(ΓS(L)) = Aut(K|S| + K|Sc|) = Aut(K|S| + K|Sc|) = S|S| × S|Sc|.

In view of [10, Proposition 2.11] and Theorem 1.1, we have the following lemma.

Lemma 2.8. Assume that α : L −→ L′ is a lattice isomorphism and S is a prime ideal or a filter
of L, then

Aut(ΓS(L)) ∼= Aut(Γα(S)c(L′)).

Corollary 2.9. If S is a filter or prime ideal of the lattice L, then Aut(ΓS(L)) = Aut(ΓSc(L)).

Proof. Let S be a filter or prime ideal of the lattice L. By [10, Corollary 2.12], ΓS(L) = ΓSc(L).
Hence, by Theorem 1.1, Aut(ΓS(L)) = Aut(ΓSc(L)).

It is clear that Aut(L) and Aut(ΓS(L)) need not be isomorphic. We illustrate this concept
with two examples.
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Example 2.10. Let the lattice L which is shown in Fig. 1. Then Aut(L) = {id,θ}.

θ =

(
1 a b c d e 0
1 b a c d e 0

)
.

Now consider S = {1, a,b, c}. Since S is a prime filter of the lattice L, by [10, Theorem 2.9],
ΓS(L) = K4 ⊕ K3. So by Theorem 2.7, Aut(ΓS(L)) = S4 × S3.

Example 2.11. Let X = {a,b, c} and L = (P(X),⊆) (Fig. 2).
Then Aut(L) = {id,θ1,θ2,θ3}.

θ1 =

(
{} {a} {b} {c} {a,b} {a, c} {b, c} {a,b, c}
{} {a} {c} {b} {a, c} {a,b} {b, c} {a,b, c}

)
,

θ2 =

(
{} {a} {b} {c} {a,b} {a, c} {b, c} {a,b, c}
{} {b} {a} {c} {a,b} {b, c} {a, c} {a,b, c}

)
,

θ3 =

(
{} {a} {b} {c} {a,b} {a, c} {b, c} {a,b, c}
{} {c} {b} {a} {b, c} {a, c} {a,b} {a,b, c}

)
.

Now consider S = {{c},{b, c}}. The associated graph ΓS(L) is shown in Fig. 3. So the
automorphism gruop of ΓS(L) is isomorphic by S1 × S2 × S1 × S4.

1

a b

c

d

e

0

{a,b, c}

{a,b} {b, c}

{b}

{a, c}

{}

{a} {c}

Fig. 1: The lattice L. Fig. 2: The lattice of power set X = {a,b, c}.

{c} {b, c}

{} {b}

{a, c}

{a,b}

{a,b, c}

{a}

Fig. 3: The graph ΓS(L).
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Theorem 2.12. Let Aut(L,S) = {α ∈ Aut(L) : α(S) = S}.

1. Aut(L,S) is a subgroup of Aut(L),

2. Aut(L,S) is a subgroup of Aut(ΓS(L)),

3. Aut(L) ∩ Aut(ΓS(L) = Aut(L,S).

Proof. 1. Assume that α, β ∈ Aut(L,S). Since α ∈ Aut(L), by Theorem 1.2 α−1 ∈ Aut(L)
and α−1(S) = S, so α−1 ∈ Aut(L,S). Also αβ ∈ Aut(L) and αβ(S) = α(S) = S, thus
αβ ∈ Aut(L,S). Hence Aut(L,S) is a subgroup of Aut(L).

2. It is sufficient to show that Aut(L,S) is a subset of Aut(ΓS(L)).

Let α ∈ Aut(L,S), hence

{x,y} ∈ E(ΓS(L))⇐⇒ x ∨ y ∈ S ⇐⇒ α(x ∨ y) ∈ α(S) = S
⇐⇒ α(x) ∨ α(y) ∈ S ⇐⇒ {α(x),α(y)} ∈ E(ΓS(L)),

which implies that α ∈ Aut(ΓS(L)).

3. By Part (1) and (2), the set Aut(L,S) ⊂ Aut(L) ∩ Aut(ΓS(L). Now suppose that β ∈
Aut(L) ∩ Aut(ΓS(L), we show that β(S) = S. Let s ∈ S, clearly {0, s} ∈ E(ΓS(L)). Since
β ∈ Aut(L), {β(0), β(s)} ∈ E(ΓS(L)). We know that β(0) = 0, so {0, β(s)} ∈ E(ΓS(L)).
By definition of the graph ΓS(L), β(s) ∈ S. Thus β(S)⊆ S and this completes the proof.

Remark 1. In the Example 2.10, Aut(L,S) = Aut(L). Also one can easily check that for θ ∈ Aut(L,S)
and ϕ ∈ Aut(ΓS(L)), ϕoθoϕ−1 /∈ Aut(L,S).

ϕ =

(
1 a b c d e 0
1 c b a d e 0

)
.

Hence, it is not nessesary that Aut(L,S) is a normal subgroup of Aut(ΓS(L).
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