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Abstract. In this article, we explore the adjacency matrix of a two-sided group graph and its prop-
erties. We introduce the two-sided color group digraph as a generalization of the Cayley color graph
and the two-sided group digraph. We also obtain the adjacency matrix of the latter digraph and pro-
vide a criterion for determining the normality of the adjacency matrix of a two-sided group graph.
Moreover, we prove that if all the two-sided group digraphs of valency two for a certain group G are
normal, then G is a Hamiltonian group. We also show that if a strongly connected two-sided group
digraph of valency two is normal, then the corresponding group is isomorphic to the product of two
groups: a cyclic group with either Tm,n or Hp,q, or an abelian group.
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1 Introduction

A Cayley digraph is a directed graph that has a finite group, G, as its vertex set. An arc
(x,y) connects vertex x to vertex y if and only if x−1y ∈ S, where S is a subset of G and the
identity element, e, is not an element of S. The digraph is represented as

−→
Cay (G,S). If the

subset S is symmetric, meaning S = S−1 =
{

s−1 : s ∈ S
}

, then the digraph becomes a simple
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undirected graph called a Cayley graph. This graph is represented as Cay(G,S). If the subset
S is empty, the related Cayley graph has no edges. The graph is connected if and only if G
is generated by S [2]. There have been many generalizations of Cayley digraphs, including
the recent introduction of a two-sided group digraph by Iradmusa and Praeger, denoted by
−→
2S(G; L, R) [6]. This digraph is defined on a group G as the vertex set, with L and R as two
non-empty subsets of G. An arc is formed between vertices x and y if and only if y = l−1xr for
some l ∈ L and r ∈ R. It is important to note that for distinct ordered pairs (li,ri) that occur in
the relation y = l−1

1 xr1 = l−1
2 xr2, at most one arc from x to y is considered. If the digraph has

no loops and the adjacency relation is symmetric, then it is a simple graph called a two-sided
group graph, denoted by 2S(G; L, R). If a group is abelian, its associated two-sided group
digraph will be a Cayley digraph. For the purposes of this paper, we will assume that all
groups are non-abelian.

In a two-sided group digraph
−→
2S(G; L, R), the arcs that start from a vertex x are referred

to as the pairs (x,y), where y is known as the out-neighbor of x. The out-valency of a vertex
x is the number of distinct out-neighbors of x. Conversely, the in-valency of a vertex x is the
number of distinct in-neighbors of x, represented by the pairs (y, x), where y is called the in-
neighbor of x. If all vertices in the digraph have the same out-valency and in-valency c, it is
considered as regular of valency c. The following definition provides sufficient and necessary
conditions by which a two-sided group digraph is simple with no loops and regular valency
|L||R|.

We must remark that if g ∈ G and L ⊆ G, then Lg = g−1Lg.

Definition 1. [6] Let G be a group with identity element e, L and R be two non-empty subsets
of G. A pair (L, R) has the 2S-graph-property if for all g ∈ G the following conditions hold:
(i) L−1gR = LgR−1,
(ii) Lg ∩ R = ∅,
(iii) (LL−1)g ∩ (RR−1) = {e}.

Note that, unlike Cayley graphs, the condition G = ⟨L ∪ R⟩ is insufficient
−→
2S(G; L, R)

graphs to be connected.
A word in a subset L of a group G is a string w = l1l2...lk, where each li ∈ L. The integer k,

known as the length of w and denoted |w|, and in G, we always identify w with its evaluation,
which is the element obtained by multiplying the li in the given order.

Lemma 1.1. [6] Let L, R be two non-empty subsets of a group G. If
−→
2S(G; L, R) is connected, then

G = ⟨L⟩⟨R⟩ and there exist words w in L ∪ L−1 and w′ in R ∪ R−1, with lengths having opposite
parity, such that ww′ evaluates to the identity element e in G.

In this discussion, we have focused on color graphs that involve labeling the arcs of di-
graphs with complex numbers. A color graph is defined as a pair consisting of a vertex set
and a mapping that associates a color to each arc. Non-edges are represented by the color 0.
The adjacency matrix of a color graph is obtained by evaluating the color mapping on each
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pair of vertices. Cayley color graphs, a specific type of color graph, are defined using a group
and a function that maps group elements to complex numbers.

If the matrix N satisfies the relation NT N = NNT [10], then it is considered normal. The re-
lationship between the eigenvalues of these matrices and their entries is significant, as stated
in Theorem 2.5.3 [5]. Basically, an n × n matrix A = [aij] is considered normal if and only
if ∑

i,j
|aij|2 = ∑

i
|λi|2, where λi

,s are the eigenvalues of the matrix and 1 ≤ i ≤ n. This rela-

tion shows a connection between the normality of the adjacency matrix of a digraph and
its spectrum. Several authors have recently studied the computation of eigenvalues of di-
graphs [3, 7, 11]; moreover, this issue justifies how this topic is essential.

We emphasize that a digraph is normal only if its adjacency matrix is normal. It is clear
that whenever N = NT, N is a normal matrix; therefore, if all arcs of a digraph are double
and both (x,y) and (y, x) are arcs, for all vertices x,y, the adjacency matrix of the digraph
is symmetric, and so the digraph is normal. A proper normal digraph (PND) is a normal
digraph where all arcs are not double and without loops [10] .

In this paper, we establish certain conditions that ensure the adjacency matrix of Γ =
−→
2S(G; L, R) is normal. A Hamiltonian group is a non-abelian group where all subgroups are
normal. We prove that if all two-sided group digraphs of valency two for a certain group
G are normal, then G is a Hamiltonian group. This outcome is similar to the previously re-
searched Cayley digraphs of valency two [8]. Furthermore, we indicate that if a strongly
connected two-sided group digraph of valency two is normal, then G = K.⟨z⟩ in which K
is an abelian subgroup of G and ⟨z⟩ is a cyclic group either G ∼= Tm,n.⟨z⟩ or G ∼= Hp,q.⟨z⟩ in
which Tm,n, Hp,q are as follows:

Tm,n = ⟨x,y| x2m = yn = e, x−1yx = y−1⟩, where m ≥ 1 and n ≥ 3; and

Hp,q = ⟨x,y| x4p = e, y2q = x2p, x−1yx = y−1⟩, where p ≥ 1 and q ≥ 1.

2 Two-sided Color Group Digraphs and their adjacency matrices

Now, we generalize a Cayley color graph, a digraph defined in [1], and we name it a two-
sided color group digraph. Let G be a finite group, α : G → C and β : G → C be two functions,
and for g, h ∈ G, we define the function cΓ : G × G → C as follows:

cΓ(g, h) =
1

tg,h
∑

x∈G
α(g−1xh)β(x), (1)

where Tg,h = {x ∈ G : α(g−1xh) = β(x) ̸= 0} and

tg,h =

{
|Tg,h| i f Tg,h ̸= ∅
1 otherwise

(2)

We introduce a two-sided color group digraph Γ = Γ(G;α, β) with the vertex set V(Γ) = G
and cΓ(g, h), where cΓ : G × G → C defined by relation (1).
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In the following theorem, we show that Γ = Γ(G;α, β) is a two-sided group digraph for
two specific functions α, and β.

Proposition 2.1. Let G be a group. If a two-sided color group digraph Γ = Γ(G;α, β), in which two
functions α, β are from G to C, have the values in {0,1}, then Γ is a two-sided group digraph.

Proof. It suffices to have α, β : G → C such that α(g), β(g) ∈ {0,1} for all g ∈ G, R = {r ∈
G : α(r) = 1}, and L = {l ∈ G : β(l) = 1}, then Γ is a two-sided group digraph denoted by
Γ =

−→
2S(G; L, R) .

Let g, h ∈ G, for all x ∈ G, if α(g−1xh) = 0 or β(x) = 0, then g−1xh /∈ R or x /∈ L, therefore
(g, h) is not an arc, and according to relation (1), we have cΓ(g, h) = 0. Now, if there is at least
one x ∈ G such that α(g−1xh) = 1 and β(x) = 1, then g−1xh = r and x = l for some r ∈ R, l ∈ L,
so g−1lh = r, hence (g, h) forms an arc and, in this case, cΓ(g, h) = 1.

According to the proposition 1, the adjacency matrix of Γ = (G;α, β) is as follows:

A =
1
|G| ∑

g,h∈G
∑

x∈G

1
tg,h

α(g−1xh)β(x)Lg.Rh,

where Lg = [lxy(g)]x,y∈G, Rg = [rxy(g)]x,y∈G, lxy(g) =
{

1 i f g−1x = y
0 otherwise

, and rxy(g) =
{

1 i f xg = y
0 otherwise

.

Now, we have the matrix Λg,h = [λxy(g, h)]x,y∈G, where

λxy(g, h) =
{

1 i f y = g−1xh
0 otherwise.

Further, it is clear that LgRh = Λg,h, so the adjacency matrix of a two-sided color group di-
graph is represented by the following relation.

A =
1
|G| ∑

g,h∈G
∑

x∈G

1
tg,h

α(g−1xh)β(x)Λg,h.

Example Let G = D6 = ⟨a,b|a3 = b2 = 1,b−1ab = a−1⟩ be the dihedral group of order 6 and
L = {a, a2}, R = {ab, a2b}. Here, corresponding permutation matrices are L1 = R1 = I6, the
identity matrix of order 6, and La =

(
A O
O A

)
, La2 =

(
B O
O B
)
, Lb =

(
O C
C O
)
, Lab =

(
O D
D O

)
, La2b =(

O E
E O
)
, Ra =

(
B O
O B
)
, Ra2 =

(
A O
O A

)
, Rb =

(
O I
I O
)
, Rab =

(
O B
B O
)
, Ra2b =

(
O E
E O
)

where O, A, B, C, D,
E are matrices of order 3 as follows:
A =

( 0 0 1
1 0 0
0 1 0

)
, B =

( 0 1 0
0 0 1
1 0 0

)
, C =

( 1 0 0
0 0 1
0 1 0

)
, D =

( 0 1 0
1 0 0
0 0 1

)
, E =

( 0 0 1
0 1 0
1 0 0

)
, and O represents zero matrix.

With simple computations and mentioning α(g), β(g) ∈ {0,1}, we have

∑
g,h∈G

∑
x∈G

1
tg,h

α(g−1xh)β(x)Lg.Rh = 6
(

O J3
J3 O

)
= 6T

, where J3 =
( 1 1 1

1 1 1
1 1 1

)
and T is the adjacency matrix of Γ = 2S(D6; L, R).
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3 Two-sided Group Digraph with Normal Adjacency Matrix

According to definition, all arcs of a two-sided digraph
−→
2S(G; L, R) are double if and only

if L−1gR = LgR−1, for each g ∈ G, making the related digraph an undirected graph and
a normal digraph (graph). Further, the relation Lg ∩ R = ∅, for all g ∈ G, indicates that
−→
2S(G; L, R) is a digraph without a loop.

Corollary 3.1. Let G be a group with two non-empty subsets L and R. Assume that the two-sided
group digraph Γ =

−→
2S(G; L, R) is normal. Then it is a PND if and only if L−1gR ̸= LgR−1, for some

g ∈ G, and Lg ∩ R = ∅, for all g ∈ G.

It is evident that the following result is true by citing Proposition 4 from reference [10].

Corollary 3.2. There is no non-abelian group G with two non-empty subsets L, and R, such that
the two-sided group digraph Γ =

−→
2S(G; L, R) be a proper normal connected tree or a proper normal

connected unicyclic digraph with at least one vertex of valency one.

For the adjacency matrix of a digraph to be considered normal, it must satisfy the con-
dition that the number of common in-neighbors between any two vertices is equal to the
number of common out-neighbors. This is a well-known fact that can be found in Propo-
sition 1 of [10]. To apply this concept to a two-sided group digraph Γ =

−→
2S(G; L, R), where

L and R be two non-empty subsets of a group G, we can use the fact that L−1gR, LgR−1

represent the sets of out-neighbors and in-neighbors of g (g ∈ G), respectively. Therefore,
the adjacency matrix of Γ will be normal if and only if the intersection of L−1gR and L−1hR
equals to the intersection of LgR−1 and LhR−1, for all g, h ∈ G.

Proposition 3.3. Let G = D2n = ⟨a,b|an = b2 = e, b−1ab = a−1⟩, L and R be two non-empty subsets
of G. If one of the following three cases holds, then Γ =

−→
2S(G; L, R) is normal :

(i) L, R ⊆ {aib|0 ≤ i ≤ n − 1};
(ii) L, R ⊆ ⟨a⟩;
(iii) One of the sets L or R is a subset of ⟨a⟩, and another is a subset of {aib|0 ≤ i ≤ n − 1}.

Proof. (i) In this case, since L and R are inverse-closed subsets (L = L−1 and R = R−1), then
Γ is a simple undirected graph; so, the adjacency matrix of Γ is symmetric, which is normal.
(ii) Let L, R ⊆ ⟨a⟩, then L = {ai1 , ..., ais} and R = {aj1 , ..., ajm}. We must show that |L−1akbwR ∩
L−1ak′bw′

R|= |LakbwR−1 ∩ Lak′bw′
R−1|, for all k,k′,w,w′, where 0≤ k,k′ ≤ n− 1, 0≤ w,w′ ≤ 1.

It is convenient to call these two recent subsets A and B, respectively. We define the function
ϕ : A −→ B as follows. If x ∈ A, then x = a−ip+kbwajq = a−ir+k′bw′

ajt , for some ip, ir ∈ {i1, ..., is}
and jq, jt ∈ {j1, ..., jm}. Therefore, air+kbwa−jt = aip+k′bw′

a−jq . It implies that y = air+kbwa−jt =

aip+k′bw′
a−jq belongs to set B. Hence, it is sufficient to define ϕ(x) = y. One can prove that ϕ

is bijective; therefore, the adjacency matrix of Γ is normal. (iii) It is similar to the case (ii).

By Proposition 2, the Dihedral group does not have a PND in case (i), and if cases (ii) or
(iii) occur, it likely has some. For example, if we consider the Dihedral group of order 12 with
L = {a, a2}, R = {a3}, then Γ =

−→
2S(G; L, R) is a PND.

Now, we determine the necessary condition under which the adjacency matrix of the two-
sided group digraph is normal.
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Lemma 3.4. Let G be a finite group and L, R ⊆ G and |L| ≥ 2. If the adjacency matrix of Γ =
−→
2S(G; L, R) is normal, then (LL−1)yRR−1 = (L−1L)yR−1R, for all y ∈ G.

Proof. Suppose that y ∈ G and e ̸= g ∈ (LL−1)yRR−1, then g = (l1l−1
2 )yr2r−1

1 , for some l1, l2 ∈
L, r1,r2 ∈ R. Assume that x = yg, then g = y−1x and x = (l1l−1

2 )yr2r−1
1 . Hence, l−1

1 xr1 =

l−1
2 yr2 = z is a common out-neighbor of x,y, i.e., the set of common out-neighbors of x and

y is non-empty. Since the adjacency matrix of Γ =
−→
2S(G; L, R) is normal, thus the number

of common in-neighbors of x, y equals the number of common out-neighbors of x, y. So,
the set common in-neighbors of x and y is not empty. Therefore, l3xr−1

3 = l4yr−1
4 , for some

l3, l4 ∈ L and r3,r4 ∈ R. Thus x = l−1
3 l4yr−1

4 r3, so g = y−1x = (l−1
3 l4)yr−1

4 r3 ∈ (L−1L)yR−1R, and
it implies (LL−1)yRR−1 ⊆ (L−1L)yR−1R. Similarly, the reverse is correct, so (LL−1)yRR−1 =
(L−1L)yR−1R, for all y ∈ G.

Here, a sufficient condition of normality of Γ =
−→
2S(G; L, R) is presented.

Lemma 3.5. Let G be a finite group and L, R ⊆ G. If one of the following conditions holds, then the
adjacency matrix of Γ =

−→
2S(G; L, R) is normal.

(i) l1l2 = l2l1, r1r2 = r2r1, for all l1, l2 ∈ L and r1,r2 ∈ R,
(ii) l2

1 = l2
2 ,r2

1 = r2
2, for all l1, l2 ∈ L, and r1,r2 ∈ R.

Proof. (i) Let x,y ∈ G and if z1,z2 are distinct common out-neighbors of x,y, then z1 = l−1
1 xr1 =

m−1
1 yn1 and z2 = l−1

2 xr2 = m−1
2 yn2 for some l1, l2,m1,m2 ∈ L and r1,r2,n1,n2 ∈ R. Since l1l−1

2 =

l−1
2 l1, r1r−1

2 = r−1
2 r1 for all l1, l2 ∈ L and r1,r2 ∈ R, we obtain distinct common in-neighbors

z′1 = l1yr−1
1 = m1xn−1

1 , z′2 = l2yr−1
2 = m2xn−1

2 . Thus, in this case, we have a one-to-one map-
ping from L−1xR∩ L−1yR to LxR−1 ∩ LyR−1. Therefore, the number of common in-neighbors
x,y equals the number of common out-neighbors of x,y. (ii) The proof is similar to (i).

If L and R are two single-member subsets of G, then the sets of common out-neighbors
and common in-neighbors of two distinct elements x,y of G are empty; then the adjacency
matrix of Γ =

−→
2S(G; L, R) is normal. In additon, it can be the unique PND, up to isomorphism,

the directed cycle Cn [10].

Corollary 3.6. Let G be a finite group with two subsets L = {x,y} and R, in which R is an arbitrary
singleton. Then the adjacency matrix of Γ =

−→
2S(G; L, R) is normal, if and only if x2 = y2 or xy = yx.

Proof. If we use Lemmas 2 and 3, the proof easily follows.

Since
−→
2S(G; L, R) ∼=

−→
2S(G; R, L), then Corollary 3 explains that if a two-sided group di-

graph of valency two is normal, then both elements of L ( or R if |R| = 2) are commuted or
have the same square.

The following theorem shows that if Γ =
−→
2S(G; L, R) of valency two is normal, then G is

a Hamiltonian group. This consequence is similar to Cayley digraphs of valency two with
a normal adjacency matrix (see [8]). The next proposition presents a relationship between
normality in matrices and group theory.

Proposition 3.7. For a finite group G; if the adjacency matrix of any two-sided group digraph Γ =
−→
2S(G; L, R) of valency two is normal, then any subgroup of G is normal.
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Proof. Let H be an arbitrary subgroup of G, a ∈ H, and b ∈ G. Let L1, L2 be {a,b}, {ba, a}
respectively, and R be an arbitrary singleton of G. Since both Γ =

−→
2S(G; L1, R) and Γ =

−→
2S(G; L2, R) are normal if ab ̸= ba, Corollary 3 concludes that a2 = b2 and (ba)2 = a2 and
this implies b−1ab = a−1; therefore H is a normal subgroup.

As a result, if both Γ =
−→
2S(G; L1, R) and Γ =

−→
2S(G; L2, R) are normal where L1, L2 be {a,b},

{ba, a} respectively, with an arbitrary singleton R, then b−1ab = a or b−1ab = a−1.
In the following, we explain a theorem that is similar to one pertaining to Cayley graphs

of valency two as referenced in [8]. The methods employed in proving this theorem closely
resemble those used in Theorem 1 of [8]. We should mention that Q8 is the quaternion group
of order 8, that is, Q8 = ⟨x,y| x4 = e, y2 = x2, y−1xy = x−1⟩. Further, Corollary 3 implies
that two non-commuting elements of L, when |L| = 2, are the same square; therefore Γ =
−→
2S(G; L, R) is normal, and obviously, any two elements of Q8 × Zn

2 has this condition while
Zn

2 = Z2 × ... × Z2 for some n ∈ Z+. Theorem 1 shows that Q8 × Zn
2 , up to isomorphism, is

the only example that satisfies the assumptions.

Theorem 3.8. Let G be a finite non-abelian group. If the adjacency matrix of every two-sided group
digraph Γ =

−→
2S(G; L, R) of valency two is normal, then G ∼= Q8 × Zn

2 for some n ∈ Z+.

Proof. Let G be a non-abelian group with elements x,y ∈ G such that xy ̸= yx. Using Corollary
3, we can show that x2 = y2. Furthermore, the adjacency matrix of the group digraph Γ =
−→
2S(G; L, R) is normal when L = {x,y} or L = {yx, x}. This implies that y−1xy = x−1, and so
x−2 = x2. Thus, we have x4 = e, and the subgroup ⟨x,y⟩ is isomorphic to Q8 and that is a
normal subgroup of G by using Proposition 3.

Suppose that α ∈ G does not commute with x and y. Using the same method as in the
proof of Proposition 3, we can show that α commutes xy, so α commutes with at least one of
x, y, xy. If αx = xα and yα = αy, then we can use the adjacency matrix of the two-sided group
digraph with L = {xα,y} to show that α2 = e and thus α lies in the center of G. If yα ̸= αy, then
we have α2 = y2 = x2 and (xα)2 = x4 = e, implying that xα lies in the center of G. Therefore,
G is generated by Q and Z(G), and since Z(G) has exponent 2, we can choose a subgroup X
of index 2 of Z(G) such that X ∩ ⟨x,y⟩= {e}. This implies that G = ⟨x,y⟩ × X, and since X is
a subgroup of Z(G), it is a group of exponent 2 and is isomorphic to Zn

2 (the other cases are
similar to the considered one).

The next proposition and paragraph present more details about groups Tm,n, and Hp,q.

Proposition 3.9. [8] For the groups Tm,n and Hp,q, the following three statements hold:
(1) Tm,n ∼= Tm′,n′ iff m = m′ and n = n′;
(2) Hp,q ∼= Hp′,q′ iff p = p′ and q = q′;
(3) Hp,q ≇ Tm,n for any p,q,m,n.

According to research, both Tm,n and Hp,q are metacyclic groups. A metacyclic group G is
a group that has a cyclic normal subgroup N, and the quotient group G/N is also cyclic [9].
In a specific case, T1,n is proven to be the dihedral group D2n of order 2n, while H1,q is a
dicyclic group of order 8q which is an extension of the cyclic group of order two by a cyclic
group of order 4q. Further, Tm,n contains subgroup ⟨xm,y⟩ ∼= D2n if m is odd, and ⟨xp,y⟩ is a
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subgroup of Hp,q which is isomorphic to a dicyclic group of order 8q if p is odd. There is a
full classification of such groups in [4].

Using the definition, a digraph Γ is strongly connected if, for any two vertices v and
w, there is a path from v to w in Γ. In the final theorem, we show that if Γ =

−→
2S(G; L, R) is a

strongly connected two-sided group digraph of valency two with a normal adjacency matrix,
G has very particular conditions.

Theorem 3.10. Let G be a finite group. Suppose that Γ =
−→
2S(G; L, R) is a strongly connected two-

sided group digraph of valency two with L = {x,y}, R = {z} whose adjacency matrix is normal.
Then, G is isomorphic to one of the following groups:
(1) K.⟨z⟩, where K is an abelian group;
(2) Tm,n.⟨z⟩, where m ⩾ 1 and n ⩾ 3;
(3) Hp,q.⟨z⟩, where p ⩾ 1 and q ⩾ 1.

Proof. Since Γ is strongly connected, then it is connected, and using Lemma 1 implies G =
⟨L⟩⟨R⟩= ⟨x,y⟩⟨z⟩ and there exist words w in L ∪ L−1 and w′ in R ∪ R−1, with lengths having
opposite parity, such that ww′ evaluates to the identity element e in G. Applying Corollary
3, we have x2 = y2 or xy = yx. If xy = yx, then the case (1) happens, otherwise x2 = y2 and
suppose that t = x−1y. It is clear that ⟨L⟩= ⟨x, t⟩ and we have x2 = y2 = xtxt or, equivalently,
x−1tx = t−1. If the order of t is two, then t−1 = t. It implies x−1tx = t, and thus ⟨L⟩ must
be abelian and this is a contradiction. Therefore, the order of t is at least three. Assume that
r is the order of x; since x2 ∈ Z(⟨L⟩) and x /∈ Z(⟨L⟩), we know that r = 2m for some m. Let
n be the smallest natural number such that tn = xs for some s ∈ {0, ...,2m − 1}. We get tn =
x−1tnx = (x−1tx) . . . (x−1tx) = t−n and therefore x2s = t2n = e. Hence, either s = 0 or s = m. If
s = 0, then ⟨L⟩= Tm,n. In case s = m, then ⟨L⟩ has the form ⟨x, t|x2m = e, tn = xm, x−1tx = t−1⟩.
Since x2 ∈ Z(⟨L⟩), xm ∈ Z(⟨L⟩), and x /∈ Z(⟨L⟩), we have m = 2p for some p. If n is odd,
then (txm)n = tnxm = t2n = e. Furthermore, x−1(txm)x = t−1xm = xmt−1 = (txm)−1. So, we
can conclude that ⟨L⟩ is isomorphic to Tm,n. Finally, if n = 2q for some q, then ⟨L⟩ = Hp,q.
Therefore, G ∼= Tm,n.⟨z⟩ or G ∼= Hp,q.⟨z⟩.
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