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Abstract. The formulation of a hypothesis for any pair of nonempty finite languages is considered.
The hypothesis consists in the formulation of the necessary conditions for the equality of infinite it-
erations of these languages, the paper provides some equivalent versions of this hypothesis. When
fulfilling this hypothesis, we show the possibility of verifying the equality of infinite iterations of
these languages in polynomial time. On the other hand, we present a plan for reducing the verifi-
cation of the same equality to checking the completeness of the language of a specially constructed
nondeterministic finite automaton, and such a check cannot be carried out in polynomial time. In this
regard, the possibility of reducing the equality P=NP to the special hypothesis of the theory of formal
languages is formulated.
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1 Introduction and motivation

The subject of this paper has the following two preambles, they are almost independent
of each other.

The first preamble. In the 1990s, the author was engaged in describing subclasses of a
class of context-free languages with a decidable equivalence problem. At that time, it was
significant that such subclasses seemed important for the translation process (i.e., for creating
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automation systems for building translators), and also that the description of such subclasses
should be as little as possible related to deterministic context-free languages (for which the
equivalence problem was not yet solved at that time). Such subclasses were described by the
author in two different publications published in the journals of Moscow State Lomonosov
University: the first one was “more theoretical” [1], and the second one was “more practical”
[2]. The material of the first paper was not subsequently published in English: primarily
because the solvability of the equivalence problem in the class of deterministic CF-languages
was already proved ( [3], the partially proof was published some before), and the work on
the description of alternative subclasses began to be of much less interest.

However, in the process of working on this topic, the author considered an auxiliary
problem; it was a problem about the necessary and sufficient conditions for the equivalence
of the so-called bracketed languages; note that some new results on this topic were published
recently in [4], there is also a detailed definition of the mentioned bracket languages. And for
it, another problem was solved, i.e. an “auxiliary for auxiliary” problem, and, as usual in such
situations, the last problem has a very simple formulation. Briefly, this simple formulation
can be stated as follows: it is necessary to formulate necessary and sufficient conditions for
two finite formal languages having the same (infinite) set of infinite iterations corresponding
to them (we conditionally call equivalence in the infinity of finite languages), see [5].a But
shortly after that publication, the author discovered an incompletely proven fact (about it see
below, Section 3); and therefore, we did not use in the next papers the results of [5], we used
some special cases of this problem only.

The second preamble. Regardless of the search for necessary and sufficient equivalence
conditions in the infinity of finite languages, the task of creating algorithms to verify this
equivalence was solved. To describe such algorithms, 8 variants of finite automata were used,
see [6, 7], and the two simplest of them are of the greatest interest. Those are so-called PRI
and NSPRI automata, see [8, 9] for them. It turned out that when fulfilling the hypothesis
under consideration, we can describe a polynomial algorithm describing the operation of one
of these automata. Therefore, if it is possible to prove the impossibility of such a polynomial
algorithm in case of non-fulfillment of this hypothesis, then we will get a reduction of the
well-known problem P = NP to the hypothesis under consideration.

Thus, it is the hypothesis that is considered in this paper.
The paper has the following structure.
Section 2 discusses the basic designations and conventions for their use; some of these

designations are non-standard. One of the most important concepts defined in this section is
the binary relation ⩽|⩾ defined on a set of finite languages over the considered alphabet, the
whole material of the paper is connected with it.

In Section 3 and some next sections, we consider the mentioned hypothesis. This hypoth-
esis can be formulated very briefly as follows: infinite iterations of finite languages are the

a In 1991–93, the author had a long correspondence with professor Rohit Jivanlal Parikh
(https://en.wikipedia.org/wiki/Parikh%27s theorem, https://en.wikipedia.org/wiki/

Rohit Jivanlal Parikh, etc.). Based on the results of this correspondence, the paper [5] was published.
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same if and only if these languages can be represented as the same morphism of extended
maximal prefix codes over an auxiliary alphabet. Particularly in Section 3, we consider some
our previous results. Then in Section 4, we consider some main variants of its formulation;
these variants do not use automata and trees.

Section 5 briefly discusses non-deterministic finite automata of a special kind, so-called
petal automata (or semi-flower automata). We present the results of one of our previous
papers, which can be formulated as follows: for any regular language and its table of the
binary relation # (for more information about this relation, see Section 2), there is an algo-
rithm for constructing a petal automaton having either the same table or such a table with an
added column (i.e., with an added state in the canonical automata for the mirror language).
Specifically in this paper, petal automata are used for two more reformulations of the main
hypothesis considered in the paper, see Section 6. Thus, the possible whole title of Section 6
could be as follows: “The auxiliary variants of the formulation using infinite trees”. We use
petal finite automata, as well as infinite iterative trees.

The above-mentioned plan of the reduction of P = NP equality is given in Conclusion,
Section 7. A more exact title for this section could be as follows: “On the plan of proving
the possibility of reducing the equality of P = NP to a hypothesis of the theory of formal
languages” (meaning the hypothesis ( Ξ\/ )).

2 Preliminaries

This section discusses the basic designations and conventions for their use. It should be
also noted that some of these designations are non-standard. One of the most important
concepts defined in the section is the binary relation ⩽|⩾ defined on a set of finite languages
over the considered alphabet, the entire material of this paper is connected with it.

Thus, let us go directly to the notation.
We shall most often consider words and languages over the “main” alphabet Σ; the “aux-

iliary” alphabet will usually be ∆, sometimes with subscripts; all alphabets are always finite.
For the given word u ∈ Σ∗ and language A ⊆ Σ∗:

• the language pre f (u) is the set of prefixes of the word u (including u);

• opre f (u) = pre f (u)\{u} ;

• pre f (A) =
⋃

u∈A
pre f (u) ;

• opre f (A) is defined similarly.

Similarly for suffices, su f f and osu f f .
If for two finite languages A and B (in our papers, they are most often considered over

the “main” alphabet Σ), the condition(
∀u ∈ A∗) (∃v ∈ B∗) (u ∈ opre f (v)

)
,
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is met, then we shall write A⩽|B (or B |⩾A). If the conditions A⩽|B and A |⩾B are met
simultaneously, then we shall write A⩽|⩾B.

(We shall specially note the difference in notation: in our recent papers on the one hand,
and, on the other hand, in [5] and some other papers of the 1990s. Certainly, in this paper we
shall use the notation given in this section only.)

Now we give some notation related to nondeterministic finite automata.

K =
(

Q, Σ, δ, S, F
)

(1)

is some automaton. δ is its transition function of the type

δ : Q × Σ →P(Q) ,

but not of the type
δ : Q × (Σ ∪ {ε})→P(Q) ,

where the notation P(Q) denotes the superset (the power set) of the set Q; thus, we consider
automaton without ε-transitions. We shall sometimes write some edge δ(q, a) ∋ r in the form
q a−→

δ
r, or, if it does not cause ambiguity, simply in the form q a−→r.

The mirror automaton for the automaton of (1), i.e.,(
Q,Σ,δR, F,S

)
,

where
q′ a−→

δR
q′′ if and only if q′′ a−→

δ
q′,

will be denoted by KR; note that KR defines the mirror language LR.
For automaton (1), the output language of the state q (denoted by Lout

K (q)) is the language
of the automaton (

Q,Σ,δ,{q}, F
)
.

Similarly, the input language of the state q (denoted by Lin
K (q)) is the language of the automa-

ton (
Q,Σ,δ,S,{q}

)
.

For the considered language L, its automaton of canonical form will be denoted as L̃. Let
automata L̃ and L̃R for the given language L be as follows:

L̃ =
(
Qπ,Σ,δπ,{sπ}, Fπ

)
and L̃R =

(
Qρ,Σ,δρ,{sρ}, Fρ

)
.

Moreover, we do not consider the language L = ∅, so both these automata do have initial
states.

Relation # ⊆ Qπ × Qρ is defined for pairs of states of automata L̃ and L̃R in the following
way: A# X if and only if (

∃uv ∈ L
) (

u ∈ Lin
L̃ (A) , vR ∈ Lin

L̃R
(X)

)
.
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Note that such a definition is non-constructive; however, for example, [10] contains the equiv-
alent constructive variant.

We consider deterministic finite automata as a special case of non-deterministic ones de-
fined according to (1). We shall not give detailed definitions, they are standard; we only note
that in our paper, so-called total automata will be specially used, i.e. those for which the
following condition is met: (

∀q ∈ Q
) (

∀a ∈ Σ
) (

|δ(q, a)| = 1
)
.

At the same time, in some publications, this totality is considered as a mandatory property
of a deterministic automaton, but we do not do this, and consider total automata to be the
own subset of deterministic ones.

In this paper, we shall also use so-called petal (semi-flower) finite automata; see details
in Section 5, where automata of the type K(A) for the given finite language A ⊆ Σ∗ are also
defined. For some more information about notation on the finite automata, see [10].

Further, we believe that all the languages under consideration are not empty and do not
contain ε. For some language

A ⊆ Σ∗, A =
{

u1,u2, . . . un
}

(we can assume that the words of the language are somehow ordered), we consider alphabet

∆A =
{

d1,d2, . . . dn
}

(if it does not cause ambiguities, we usually write simply ∆). For this alphabet, we consider
the morphism of the type

hA : ∆∗
A → Σ∗

defined as follows:
hA(d1) = u1 , hA(d2) = u2 , . . . , hA(dn) = un .

As usually, for each word d1d2 . . . dn ∈ ∆∗, we assume that

h(d1d2 . . . dn) = h(d1)h(d2) . . . h(dn).

The subject of this paper is related to a more important and more complex problem (i.e.,
more complex than the construction of a morphism), namely, to the problem of constructing
an inverse morphism. In [11–13], the beginning of consideration of this problem is given.

Let us formulate its condition in more detail. First, let us give such a natural definition.
For a given finite language A, morphism hA and some word u ∈ Σ∗, let us consider the
language

h−1
A (u) =

{
u∆ ∈ ∆∗ ∣∣hA(u∆) = u

}
;

we specifically emphasize that this object is a set, possibly ∅. The same construction can be
considered for some language (instead of the word u; let this language be B), and we shall be
interested only in finite languages. Exactly,

h−1
A (B) =

⋃
u∈B

h−1
A (u).
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Now let us consider another definition, almost unrelated to the previous one. Unlike
other definitions of this paper, it uses the alphabet ∆ as the “main” one. Over this alphabet,
the set of maximal prefix codes (as a set of languages) will be denoted by mp(∆).

(We shall not give definition of a maximal prefix code. Suffice it to say that this is a code
that is maximal and prefix, all these concepts are present in the “usual student courses”, i.e.
the title already contains a definition.)

The set of languages, each of which contains some maximum prefix code as a subset (pos-
sibly improper one), will be denoted by mp+(∆). Thus,

mp(∆) ⊂ mp+(∆),

and, certainly, for any alphabet, the inclusion is proper. We shall call each of these languages
by an extended maximal prefix code.

Let us return to the consideration of the “main” alphabet Σ, as well as morphisms of the
form

hA : ∆∗
A → Σ∗.

Let we have some language
A∆ ∈ mp(∆);

then we assume that the following condition is met:

hA(A∆) ∈ mp(A);

this is how we define the set of languages mp(A) over Σ. Similarly, for some language

A∆ ∈ mp+(∆)

we assume that
hA(A∆) ∈ mp+(A).

Therefore:

• mp+(∆) is the set of languages, each of which contains some maximal prefix code over
∆ as a subset;

• mp+(∆) is the set of languages, each of which is the A-morphism of some language of
the set mp+(∆); i.e., each of such languages is the special morphism of some extended
maximal prefix code.

3 The results of previous publications

In this and some next sections, we consider the hypothesis of the theory of formal lan-
guages, which we consider very important. Very briefly this hypothesis can be formulated
as follows: infinite iterations of finite languages are the same if and only if these languages
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an be represented as the same morphism of extended maximal prefix codes over an auxiliary
alphabet. By the other words:

the obvious sufficient condition for fulfilling the relation ⩽|⩾
is necessary and sufficient.

Particularly in this section, we consider some our previous results.
There is the following preamble, see also Introduction: to reformulate the equality condi-

tion P = NP, an author’s previously published result is needed, see [5] (1993). However, we
currently do not consider this result be proven. Specifically, using the terminology of this paper,
we are talking about the necessary condition for the binary relation A⩽|⩾B to be fulfilled.

Here are specific “claims” to author’s paper [5]. Certainly, condition (6.2) contains a mis-
print, it should mean the following:

A∗ ≡ ∞ D · D∗;

note that we cannot rewrite this condition using the terminology of the current paper, i.e., the
using binary relation ⩽|⩾ . There is also a typo in the formulation of Lemma 6: the initial
condition must be v ∈ A∗.

(It is worth noting that D is some assumed language, we tried to prove it in [5] its nonexis-
tence.)

However, of course, both of the above “claims” are not errors. We shall not specify a
specific error (it is long, difficult and unnecessary to explain it), but instead note the presence
of a counterexample to the provable in [5, Th. 1] condition D⩽|⩾A (here, for ease of reading,
we again use the terminology and designations of the current paper, not of [5]).

Thus, the counterexample we need can be obtained as follows For the pair of languages

A = { aaa, aabba, abba,bb} and B = { aaaa, abb, abba,bbb} ,

we shall consider “significantly more complicated” languages

A′ = (A ∪ B)2 and B′ = (A ∪ B)3, (2)

for the languages A and B. Using the previous results of [8, 9], we obtain that the following
facts hold.

• On the one hand, for a pair of languages (2), this resulting set of languages includes,
among others, the language {a}, and, therefore, the word a is one of the words of the
language D, constructed for this pair of languages in the proof of [5, Th. 1];

• But on the other hand, the two languages (2) satisfy binary relations

(A ∪ B)2⩽|⩾ (A ∪ B)3⩽|⩾ (A ∪ B) ;

at the same time, the condition

(A ∪ B)⩽|⩾ (A ∪ B ∪ {a})
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is false: for any k ⩾ 1, the word ak is not included in the language (A ∪ B)∗. How-
ever, based on the examples discussed in [8, 9], we know that the word a (respectively,
the language {a}) is obtained during the construction of the automaton NSPRI(A, B)
(respectively, of the automaton PRI(A, B)); therefore the same language {a} must be
included in the set of states of the automaton

PRI(A′, B′) = PRI( (A ∪ B)2, (A ∪ B)3 ).

The contradiction obtained here is the necessary counterexample to the statement [5, Th. 1].
However, we specifically note once again that we are not claiming that the theorem is incor-
rect: we have given a counterexample not to its formulation, but to the method of its proof.

As the conclusion of the section, let us note the following. Let some language B be fixed
now; we can assume that all words included in the set of proper suffices of the language B
belong to the set of states of a nondeterministic automaton NSPRI(A, B), moreover, it is true
for each finite language A. Therefore, all subsets of the set of such words belong to the set of
states of a deterministic automaton PRI(A, B). But, on the other hand, in real situations we
can consider a significantly smaller number of states for both of these automata: in particular,
in our examples the language

B = { aaaa, abb, abba,bbb}

has the following proper suffices of its words:

a, aa, aaa,b,ba,bb,bba

(in the alphabetical order). There are only 7 words, then we can formally assume that the
number of states of the automaton PRI is equal to 27 = 128.

4 The main variants of the formulation

. . . Thus, we have given a counterexample to one of the auxiliary proofs given in [5].
However, it is important to note that this is really a counterexample to the proof given, but not
at all to the statement being proved there. And it will not change the situation at all (it “will not
worsen” and “will not improve” the situation), if we instead of counterexample (i.e., “black
box”), will answer the same question with the help of the “white box”, i.e., if we shall indicate
a specific claim to the proof. However, this is not necessary for the purposes of this paper.

All this allows us to formulate the statement under consideration in the form of a hypothesis,
and further in this section such a formulation will be given. We believe that such a statement
is a very important hypothesis of the whole theory of formal languages. (In [13], there are formu-
lated two hypotheses, they are indicated below by ( Ξ\/ ) with strokes and ( Ξ\/Ξ\/ ). The ( Ξ\/ )
with strokes are various options of the same hypothesis, and the ( Ξ\/Ξ\/ ) can be considered
as an “special option” of ( Ξ\/ ).)
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Hypothesis Ξ\/ . For any finite languages A, B ⊆ Σ∗, the following fact holds. The equivalence
A⩽|⩾B is true if and only if there exists a finite language D ⊆ Σ∗, such that considering
corresponding alphabet ∆ (where |∆| = |D|), there exist extended maximal prefix codes

A∆, B∆ ⊆ ∆∗,

such that
A = hD(A∆) , B = hD(B∆).

We shall briefly denote this hypothesis by ( Ξ\/ ). 2

Here are some equivalent formulations of the same hypothesis ( Ξ\/ ); the equivalence fol-
lows from the material presented in this paper.

Hypothesis Ξ\/ ′. Let some finite language D ⊆ Σ∗ be given; at the same time, D is minimal
in its own equivalence class. This means, that there are no language D ⊆ ±∗, such that
D ∈ mp+(D). (When formulating the main version of this hypothesis, i.e. ( Ξ\/ ), such an
additional requirement is not necessary. Remark also that using one of the partial orders
on the set of languages described in [12, Sect. XI], another explanation of minimality is also
possible.)

Each finite language A ⊆ Σ∗ belonging to considered equivalence class of A⩽|⩾D, can be
constructed in the following 4 steps.

1. We choose some alphabet ∆, such that |∆| = |D|.

2. We consider some language A′
∆ ∈ mp(∆).

3. We construct any language A∆ ⊆ ∆∗ (certainly, depending on the given A), such that
A∆ ⊇ A′

∆; i.e., informally, we add arbitrary words to the language A′
∆; formally, A∆ ∈

mp+(∆).

4. We construct the language hD(A∆).

The constructed language hD(A∆) has to coincide with the given A. 2

The next version of the same hypothesis we have actually already used above.

Hypothesis Ξ\/ ′′. The proposition formulated in [5, Th. 1] is true, i.e., the sufficient condition
of equivalence A⩽|⩾B formulated there is necessary and sufficient one. 2

Now, we formulate an equivalent version of the hypothesis based on its possible non-
fulfillment. To do this, we shall answer the question of how to successfully formulate what
“can happen” with this non-fulfillment. Apparently, it is best to answer this question based
on the formulation (Ξ\/ ′). Since in a potential counterexample, not all words of the language A
belong to minimal set (language) D∗, then there exists some minimal language in its equiva-
lence class D (let us assume that this language sets the equivalence class we are considering)
and a word not belonging to the set D∗ (let it be u ∈ Σ∗), such that

(D ∪ {u}) ⩽|⩾ D
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(or, equivalently, (D ∪ {u})⩽|D here). Therefore, we formulate the hypothesis simply as
nonexistence of such a pair.

Hypothesis Ξ\/ ′′′. There exist no pair (D,u), where

D ⊆ Σ∗ and u ∈ Σ∗, u /∈ D∗,

such that:

• the language D is the minimal language in its equivalence class (see before some com-
ments about such minimality);

• (D ∪ {u}) ⩽|⩾ D. 2

We shall mostly consider the last version of the hypothesis, i.e., (Ξ\/ ′′′). It is clear that we
know no such pair (u, D), but we also do not know the proof of the non-existence of such a
pair (otherwise, all this could not be called a hypothesis); however, now we assume that such
a pair exists, and we shall consider the corresponding language D (we repeat once again that
it is the minimal one of its equivalence class) and the word u that does not belong to the
language D∗.

Within the assumptions made, it is not difficult to verify the following fact formulated below
in this paragraph. Let v be any word of the language D. Then we “remove” v from D and
“add” the previously marked word u instead, denoting the resulting language Du−v. Then it
is false that

D ⩽|⩾ Du−v . (3)

However, this fact does follow:

• neither opportunity,

• nor impossibility

of existence of several “violations” of the hypothesis ( Ξ\/ ), for the same language D. More-
over, we cannot say that a situation is impossible when the “substitution” of some words
of the language D (not less than 1 words) for some other words (each of which violates the
hypothesis (Ξ\/ ′′′) as the word u, and, therefore, violates also the main formulation, i.e., the
hypothesis ( Ξ\/ )) gives the language belonging to the equivalence class by the relation ⩽|⩾ ,
i.e., the class formed by the considered language D. The equivalence similar to (3) can be
write as follows:

D ⩽|⩾ DF−G

(where G is the set of words to be deleted, and F is the set to be added).
Let us formulate all this in the form of the following hypothesis ( Ξ\/Ξ\/ ).

Hypothesis Ξ\/Ξ\/ . The ( Ξ\/ ) hypothesis does not hold. However, at the same time there not
exist the finite language D ⊆ Σ∗, for which the following holds.
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First, for this language D the hypothesis ( Ξ\/ ) is not executed for each of the following
words:

u1, u2, . . . , un

(according to the above explanations, not only the inequality n ⩾ 1 is fulfilled, but also n ⩾ 2;
in addition, none of these words are included in the language of D∗).

Secondly, for these languages D and F there exists some nonempty set G ⊆ D, such that

D ⩽|⩾ DF−G .

We shall be briefly denote this hypothesis by the notation ( Ξ\/Ξ\/ ). 2

The inclusions of the two formulated hypotheses can be depicted in the following Fig. 1..

Figure 1. The inclusions of the two hypotheses.

In the figure, each “point” of the drawing corresponds to a language. More precisely,
these “points” are:

• a pair (language D, word u) for the first hypothesis

• or a triple (language D, language F, language G) for the second one.

In the figure, we mean in both cases the variants of the language D only. At the same time,
certainly, two the following sets of languages cannot be empty:

• the “internal” set corresponding to the potential fulfillment of the hypothesis ( Ξ\/ ),

• and the “external” set corresponding to the potential non-fulfillment of the hypothesis
( Ξ\/ ), but at the same time to the fulfillment of the hypothesis ( Ξ\/Ξ\/ ).

The last fact is obvious due to the existence of many trivial examples. For this, it is enough
to consider the language D = { a,b} over the alphabet Σ = { a,b}. (Simplifying, we can say,
that “here the language coincides with the alphabet”.) Certainly, there is no “bad” word u
for this example, because there exist no word not belonging to Σ∗. But at the same time,
although the above sets of languages cannot be empty, they can coincide with “external” sets
of languages. Moreover, the hypotheses consist in such a possible coincidence of sets of languages.
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5 Petal automata and some auxiliary variants
of the formulation of the hypothesis

This section discusses (non-deterministic) finite automata of a special kind, [14, 15]. In
the only publication found, the term “semi-flower automata” is used; it is certainly not very
successful. Therefore we propose our title for them, i.e., “petal automata”.

Figure 2. A detailed general diagram of the transition graph of the petal automaton and a schematic
drawing of a flower (a daisy) for the analogy.

The motivation for their consideration follows from the question that arises: what can
they have to do with the considered set of problems ? After all, the main goal of almost all the
problems briefly described above in this paper is to investigate the binary relation ⩽|⩾ ; at
the same time, we have noted in previous publications that there are two possible options for
such a study:

• either to get some new necessary and / or sufficient conditions for fulfilling this rela-
tionship;

• or describe some new possibilities for its application in some other problems of the
theory of formal languages.

But in both cases, the necessary “input data” are two finite languages (not one) . . .
However, the answer to this question is also almost obvious: yes, for all the problems

described before, we really consider pairs of finite languages; at the same time, for each of
the languages of such a pair, it is desirable (and usually possible) to replace its considera-
tion with consideration of the “minimal” language (which is “minimal” in its corresponding
equivalence class with respect to ⩽|⩾ ). Note that possible approaches to defining the concept
of “minimality” were discussed, for example, in [12]; it is not very principal.
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Let us move on to the direct definition of the variant of petal automata that will be used
in this paper. Let some finite language be given, it is

A = {u1 , u2 , . . . ,ui , . . . , un } , where u1 , . . . ,ui , . . . , un ∈ Σ∗, (4)

and A ̸∋ ε. Let also

ui = ai,1ai,2 . . . ai,li (li ⩾ 1) for each i = 1,2, . . . ,n.

For this finite language A, let us consider nondeterministic finite automaton

K(A) = (Q,Σ,δ,{s}, Q), (5)

where
Q = {s} ∪

⋃
i≤n, j<li

qi,j ,

and the transition function δ, which is defined as follows for each i = 1, . . . ,n.

• If |ui| = 1, then δ(s, ai,1) ∋ s.

• Otherwise:

– δ(s, ai,1) ∋ qi,1;

– δ(qi,li−1, ai,li) = {s};

– for each j such that 2 ⩽ j ⩽ li − 1, we set δ(qi,j−1, ai,j) = {qi,j}.

(We supposed A ̸∋ ε, therefore |ui|⩾ 1.)

Such a definition describes the automaton shown in Fig. 2.; it is also obvious that the
automaton (5) defines the language pre f (A∗).

As an example, let us consider the language that in the examples of previous publications
was considered “as the second”, i.e., in our usual notation, as the language B; exactly,

B = { aaaa, abb, abba,bbb} .

We obtain the automaton shown on Fig. 3.; similarly to Fig. 2., all its states are outputs.
As can be seen from this figure, to simplify the notation, we have designated the state of s
as 0, and instead of each qi,j we write ij (this is possible here, because the maximum value of
the state number is 4). We shall continue to consider this automaton in the remainder of this
section.

As we have already noted, this section provides a formulation of a variant of the ( Ξ\/ )
hypothesis using a non-deterministic automaton K(A). Note in advance that we shall not
prove the equivalence of this formulation and the formulations given earlier. The possible
scheme of this proof is as follows. When negating the formulation (Ξ\/ ′′′) we consider the
petal automaton K(D) for language D used in that formulation; the word u has the same
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Figure 3. Petal automaton for the considered language B.

meaning. Generally speaking, this word is an input for several states of the automaton K(D),
and at the same time, it is important that among these states there is no “main” state of the
petal automaton (otherwise, we have a word from D∗). However, the union of the output
languages of these states should contain the language of the given petal automaton as a
subset, which is formulated in this version of the hypothesis.

Hypothesis Ξ\/ IV. There exists no language A ⊆ Σ∗, such that the following condition holds.
For automaton K(A), its language L = L(K(A)), and its set of states Q, there exists a

word
u ∈ L\A∗,

such that for the subset of the set of states

Q′ =
{

q ∈ Q
∣∣Lin

K(A)(q) ∋ u
}

the following is true: ⋃
q∈Q′

Lout
K(A)(q) ⊇ A∗. 2

Let us especially note that such a check (i.e., checking the possible existence of the re-
quired word u) is possible for a particular automaton K(A), or, in other words, for a particular
language A. In addition, it is obvious that the author has no examples of such languages
(otherwise we would not need to formalize all this as a hypothesis). Thus, for all languages
considered at the moment, the “bad” condition formulated in the hypothesis is not fulfilled.

Let us consider an example (a special case): for the petal automaton shown in Fig. 3., and
the words abbab. The corresponding input states are 22, 32 and 41 (note that there is no 0
state among them, this suits us), therefore, to test the special case of the hypothesis, it must be
shown that the union of the output languages of these states does not contain the language
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of the given petal automaton as a subset. And this follows at least from the fact that all
the words of the output languages of these states begin with b, while in the language of the
original automaton, there are also some words beginning with a.

It can also be noted that all the various variants of the sets of vertices Q′ (corresponding to
various input words u) can be obtained in the process of determinization of the considered
automaton K(A), using the usual algorithm of such determinization. (When applying the
determinization algorithm, in which all the subsets of states of the given automaton K(A) as
the so-called aggregate states are considered, we need to considering those aggregate states
only, that are achievable.) All this makes it possible to formulate another equivalent version
of the hypothesis we are considering.

In the remainder of this section, we shall use deterministic automata, more precisely, the
standard determinization procedure. This procedure has been described many times in the
literature since the 1950s, therefore, there is no need to give specific references; however,
we shall use automata obtained after their procedure, and in this regard we need to briefly
describe its specific version. Thus, we define the standard determinization procedure as follows.

We shall formulate the next version of the hypothesis for canonical automata (and not
for such deterministic ones, which are obtained by determinization of petal automata, but
without canonization of them); apparently, the difference is not fundamental, since the union
of equivalent states of a deterministic automaton is not of interest for this paper.

We consistently form the canonical automaton

K̂ = ( Q̂, Σ, δ̂, {S}, F̂ ),

which is equivalent to automaton (1); here, using designations of (1), Q̂, F̂ ⊆ P(Q). For the
induction basis of such forming, we set

δ̂ =∅, Q̂ = {S} ;

these sets, generally speaking, will be changed. Next, we describe the induction step.
If we have already built values δ̂ for all states of Q̂ and for all letters of Σ, then we build

the set
F̂ =

{
q̂ ∈ Q̂

∣∣ (∃ f ∈ q̂) ( f ∈ F)
}

and finish the process of building automaton K̂.
Otherwise, we choose some state q̂ ∈ Q̂, for which transitions δ̂(q̂, a) are not formed yet;

we form them for each letter a ∈ Σ. Namely,

δ̂(q̂, a) =
⋃
q∈q̂

δ(q, a). (6)

We note two following auxiliary comments:

• in (6), we can use the sign =, but not ∋, since nothing else will be added to the set δ̂(q̂, a)
after the only execution of (6);
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• the possible further equivalent transformation of the resulting automaton, i.e. obtaining
its canonical version, is not necessary for this paper.

Hypothesis Ξ\/ V. There exist no language A ⊆ Σ∗, such that the following holds. For au-
tomaton K(A), we obtain the equivalent deterministic automaton K̂(A) using the standard
determinization procedure described before (we also use all notation of it).

For K̂(A), we choose some state q̂ ∈ Q̂ such that q̂ ̸∋ s, and for it, consider deterministic
automaton

K̂q̂(A) = ( Q̂, Σ, δ̂, {q̂}, F̂ ).

We note two following auxiliary comments:

• recall that the state s used for choosing q̂ is the “main” state of nondeterministic au-
tomaton K(A);

• under such constraints, at least one such state q̂ gives the fulfillment of the condition
under consideration (the non-fulfillment of which is postulated in the present version
of the hypothesis).

Then

L(K̂q̂(A)) ⊇ L(K̂(A)) =L(K(A)) = A∗. 2

Let us continue to consider the example of the automaton shown in Fig. 3.. First, let us
consider the process of determinization of this automaton, see Table 1.. We should note that
in it, we denoted aggregate states by applying such conventions:

• bold font indicates those ones, which do not contain the state 0 as their element;

• of the last ones, those are highlighted with a gray background, in which there are tran-
sitions on both letters of the alphabet (from the absence of at least one such transition
it immediately follows, that the automaton with such a starting state is obviously not
suitable, i.e., it does not require further verification); we have 2 such states.

We also recall that according to our agreements, all states of the considered automata are
output; therefore, we do not note this fact in the tables.

By reinterpreting the aggregate states in the usual way, we obtain an equivalent deter-
ministic automaton given in Table 2.. As we have already noted, it is canonical. Matching
the name of the automaton with the name of its state is made for readability and should not
cause problems.

We already know that to test a special case of the hypothesis, we need to consider 2 au-
tomata, obtained from Table 2. by replacing the starting state with one of the two that we
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Table 1. The process of determinization of
the initial petal automaton.

Table 2. The resulting equivalent
deterministic automaton.

Table 3. The first deterministic automaton to
be checked.

Table 4. The second deterministic automaton
to be checked.

previously marked with a gray background; in the new notation, these are the states B and
K.
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For the input state B, we obtain the automaton K1, see Table 3..
To the right of the table, there is a brief explanation that this automaton is not a coun-

terexample to the hypothesis Ξ\/ V; in this text, the ⩽ sign means that the output language of
the “smaller” state must be a subset of the language of the “greater” state. Therefore the con-
dition Lout

K1
(A) ⊆ Lout

K1
(B) must be met, and from here, considering both possible transitions

from these states, we get the need to fulfill the condition

Lout
K1

(B) ⊆ Lout
K1

(D) & Lout
K1

(C) ⊆ Lout
K1

(E);

the first of the conditions in this conjunction is impossible due to the required transitions by
the letter b and the deliberate non-fulfillment of the condition Lout

K1
(E) =∅.

The second automaton necessary to test the hypothesis (K2, its input is the state K) is
given in Table 4.; the verification is carried out similarly.

For the formulation of the next version of the hypothesis, we use constructions obtained
on the basis of the petal finite automata.

6 The auxiliary variants using infinite trees

Thus, like previous formulations, we consider the language A used for obtaining automa-
ton K(A). This section uses another equivalent reformulation of the same hypothesis, exactly,
the one in terms of infinite iterative trees, see [8,9] etc. For its “initialization”, we shall apply
a variant of the hypothesis (Ξ\/ ′′′).

First, we have to define strictly the simple version of infinite iterating.

Definition 1. For the nonempty finite language A ⊆ Σ∗, such that A ̸ ∋ ε, we define the infinite
iterating tree (we shall denote it by I IT(A)) as follows.

• The vertices of the tree I IT(A) are a subset of all the vertices of the infinite tree corre-
sponding to the language Σ∗.

• This subset is the vertices of the type pre f (A∗).

• The vertices corresponding to the words of the set A∗ are called marked, the other ones
are called unmarked.

The (infinite) subtrees of this tree are defined in the usual way. For their denoting, we use
their roots. 2

For some examples, see also [8, 9].
Now we can give another equivalent formulation of the hypothesis ( Ξ\/ ).

Hypothesis Ξ\/ VI. There exist no language A ⊆ Σ∗, such that the tree I IT(A) built for it it has
the following property. Among the unmarked vertices, there exist some v, such that the v-
subtree contains the given tree (i.e., the ε-subtree) as the subtree. 2
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7 Conclusion. The possible reduction
of P = NP equality to considered hypothesis

A more exact title for this section could be as follows: “On the plan of proving the possi-
bility of reducing the equality of P = NP to a hypothesis of the theory of formal languages”
(meaning ( Ξ\/ )).

Thus, let everywhere else the condition ( Ξ\/ ) is met. Knowing that it is fulfilled, we some-
how want to determine for some finite languages A, B ⊆ Σ∗, whether the equality of A⩽|⩾B
is fulfilled. Let us describe two possible ways to get an answer to this question.

The first way. Firstly, we construct an optimal inverse morphism for each of these two
languages as an auxiliary problem; according to the hypothesis ( Ξ\/ ) (to its “main” variant),
we should get matching languages, i.e. the same final language D ⊆ Σ∗, such that

A, B ∈ mp+(D).

Note that the notation D has in this case the same meaning that was used in [5].
For this goal, we firstly consider the language A (we “temporarily forget” the language

B). For A, we make the following steps.

• First, we consider its potential roots ( [11–13]):

A′ =
∗√A =

{
u ∈ Σ∗ ∣∣ (∃n ∈ N) (un ∈ A)

}
;

we specifically note that the equality n = 1 is allowed in this case.

• Secondly, we recall that the problem we are considering can in principle be solved by
iterating over the set of all subsets of the set of potential roots. (Evidently, such an
algorithm is exponential.)

• Thirdly, we consider the special subset of the set of potential roots. Exactly, we consider
those of them that are not represented in the form of the following nontrivial concatena-
tion of its other potential roots:

A′′ =
{

u ∈ A′ ∣∣ ( ̸ ∃u1,u2, . . . ,uk ∈ A′, k ⩾ 2) (u = u1u2 . . . uk)
}

.

• Fourthly, we note that the language A′′ can be built on the basis of the language A using
a polynomial algorithm; this is obvious.

• Fifthly, as it is easy to see (for example, based on the material [11], or simply based on
the definition of the binary relation ⩽|⩾ ) that A′′⩽|⩾A′. In this regard, we shall further
consider those potential roots only, that are included in A′′.

In the resulting language, let us choose some word u ∈ A′′ and consider the problem of
determining whether it is true that

A′′ ⩽|⩾ A′′ \{u}. (7)
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Due to the fulfillment of the hypothesis ( Ξ\/ ), if at the same time the condition (7) also holds,
we obtain that u ∈ (A′′)∗; this gives a trivial (and polynomial) algorithm for checking the
needed condition (7).

Therefore, sequentially deleting all the words u such that the condition (7) is not met (i.e.,
in other words, deleting all the words u ∈ A′′, such that

A′′ |> A′′ \{u}

holds), we obtain the required language D which is the minimal one of the equivalence class de-
fined by the considered language A. Since one such deletion is polynomial, the entire algorithm
for constructing the required language D is also polynomial.

Remark once again, that the “minimality of the language” can be defined in various pos-
sible obvious ways. Some of them have been described in our previous papers. In this paper,
we shall not consider this issue in detail.

Remark also that we are considered not a general algorithm for constructing the required
language D with the necessary strict proofs, but the scheme of such an algorithm only. We
propose to give a full description in one of the next publications.

The second way. Let us start the description of this path with information about the “in-
verse problem”. Before, automaton NSPRI(A, B) for the given languages A, B ⊆ Σ∗ was
described; it is a non-deterministic finite automaton, the result of which gives an answer to
the question whether the relation A⩽|⩾B is fulfilled: it is fulfilled if and only if the language
of the automaton NSPRI(A, B) is the “complete” (the “universal”) language Σ∗. In [9], we
showed the possibility of constructing such an automaton using two given finite languages
A, B ⊆ Σ∗ in polynomial time.

However, in the general case, the answer to the last question (i.e., whether the language of
some nondeterministic finite automaton coincides with the language Σ∗) is an NP-complete
problem (even when all states are output, as in the case we are considering) and this gives
an “indirect argument” about the NP-completeness of the “direct problem”, which is more
interesting to us.

We shall formulate it (i.e., the “direct problem”) as follows. First, it is desirable for us to
formally describe the restrictions imposed on a (nondeterministic) automaton NSPRI; such
restrictions do exist (see [8, 9] etc.), for example, the following one. According to the proper-
ties of this automaton, the presence of any word u ∈ Σ∗ as a designation of some state of this
automaton implies the presence any suffix of u as the other states of this automaton, i.e., any
word belonging to the set su f f (u); in the formulas,

u ∈ Q =⇒
(
∀v ∈ pre f (u)

) (
v ∈ Q

)
; (8)

“inside” this section, we shall call (8) by the restriction (Ω).
Let us note that there may be other restrictions on the NSPRI automaton (unrelated to

(Ω)), but also note that we do not need to strictly prove the fact that any particular set of
restrictions gives a description of any possible NSPRI automaton: even if these restrictions
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satisfy a larger set of automata, we shall be able to complete the consideration of such a
“direct problem”. However, of course, the presence of these constraints should not make it possible
to answer in polynomial time the question whether an automaton satisfying such constraints defines
the “universal” language Σ∗; and (Ω) (more precisely, a set of constraints containing (Ω) only)
is such a restriction.

After describing the constraints, it is necessary to describe the procedure for constructing
a pair (A, B), which should be obtained in polynomial time on the basis of the given au-
tomaton (which is a potential automaton NSPRI). To describe such a procedure, we propose
to give in one of the following publications an algorithm for a possible subproblems of this
problem, i.e., the descriptions of a polynomial-time procedure for adding a transition. Let us
describe such a subtask in a little more detail.

• Let for some languages A and B, we already have the corresponding automaton NSPRI(A, B).

• Let, in addition, some value of the transition function

δ(q, a) ∋ q′, (9)

be given; in the given automaton NSPRI(A, B), this value should be missing.

• Then we need to specify an algorithm that modifies the given automaton NSPRI(A, B)
in polynomial time, i.e., for example, adds some words to the languages A and / or
B, resulting in a modification of the original NSPRI(A, B) automaton, and it is an au-
tomaton, which has all the existing transitions, and also a transition (9); at the same
time, it is possible to change the languages A and / or B, but such a change must also
be performed in polynomial time.

Thus, if we have a polynomial-time algorithm for constructing a pair of languages (A, B)
for a given automaton NSPRI, then we determine for this pair of languages, whether the
condition A⩽|⩾B is met:

• in polynomial time (certainly, if the hypothesis ( Ξ\/ ) is fulfilled);

• according to the above “first way”.

Therefore, in the case of the ( Ξ\/ ) hypothesis, we answer the question whether the language
of the automaton NSPRI is Σ∗ also in polynomial time.

References

[1] B. Melnikov, On a classification of sequential context-free languages and grammars, Vestnik of
Moscow University, series ”Computational mathematics and cybernetics”, 3 (1993) 64–69 (in Rus-
sian).

[2] O. Dubasova, B. Melnikov, On an extension of the class of context-free languages, Programming
and Computer Software, 21(6) (1995) 299–306.

101



Melnikov / Journal of Discrete Mathematics and Its Applications 9 (2024) 81–102

[3] G. Sénizergues, L(A)=L(B)? Decidability results from complete formal systems, Theoretical Com-
puter Science, 251(1–2) (2001) 1–166.

[4] B. Melnikov, A. Melnikova, A polynomial algorithm for construction an automaton for checking
the equality of infinite iterations of two finite languages, Lecture Notes in Networks and Systems,
502 (2022) 521–530.

[5] B. Melnikov, The equality condition for infinite catenations of two sets of finite words, Interna-
tional Journal of Foundation of Computer Science, 4(3) (1993) 267–274.

[6] B. Melnikov, L. Meng, Eight variants of finite automata for checking the fulfillment of the coverage
relation of iterations of two finite languages. Part I, International Journal of Open Information
Technologies, 11(11) (2023) 1–9 (in Russian).

[7] B. Melnikov, L. Meng, Eight variants of finite automata for checking the fulfillment of the coverage
relation of iterations of two finite languages. Part II, International Journal of Open Information
Technologies, 12(2) (2024) 1–11 (in Russian).

[8] B. Melnikov, Variants of finite automata corresponding to infinite iterative morphism trees. Part I,
International Journal of Open Information Technologies, 9(7) (2021) 5–13 (in Russian).

[9] B. Melnikov, Variants of finite automata corresponding to infinite iterative morphism trees. Part II,
International Journal of Open Information Technologies, 9(10) (2021) 1–8 (in Russian).

[10] B. Melnikov, Once more on the edge-minimization of nondeterministic finite automata and the
connected problems, Fundamenta Informaticae, 104(3) (2010) 267–283.

[11] B. Melnikov, Semi-lattices of the subsets of potential roots in the problems of the formal languages
theory, Part I. Extracting the root from the language, International Journal of Open Information
Technologies, 10(4) (2022) 1–9 (in Russian).

[12] B. Melnikov, Semi-lattices of the subsets of potential roots in the problems of the formal languages
theory. Part II. Constructing an inverse morphism, International Journal of Open Information Tech-
nologies, 10(5) (2022) 1–8 (in Russian).

[13] B. Melnikov, Semi-lattices of the subsets of potential roots in the problems of the formal languages
theory. Part III. The condition for the existence of a lattice, International Journal of Open Informa-
tion Technologies, 10(7) (2022) 1–9 (in Russian).

[14] B. Melnikov, Petal finite automata: basic definitions, examples and their relation to complete au-
tomata. Part I, International Journal of Open Information Technologies, 10(9) (2022) 1–11 (in Rus-
sian).

[15] B. Melnikov, Petal finite automata: basic definitions, examples and their relation to complete au-
tomata. Part II, International Journal of Open Information Technologies, 10(10) (2022) 1–10 (in
Russian).

Citation: Boris Melnikov, On an interesting hypothesis of the theory of formal languages, J. Disc. Math. Appl. 9(2) (2024)
81–102.

https://doi.org/10.22061/jdma.2024.10789.1069

COPYRIGHTS
©2024 The author(s). This is an open-access article distributed under the terms of the Creative Commons Attri-
bution (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, as long as
the original authors and source are cited. No permission is required from the authors or the publishers.

102


	Introduction and motivation
	Preliminaries
	The results of previous publications
	The main variants of the formulation
	Petal automata and some auxiliary variants of the formulation of the hypothesis
	The auxiliary variants using infinite trees
	Conclusion. The possible reduction of P=NP equality to considered hypothesis

