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Abstract. A generalized quadrangle is a point-line geometry such that the incidence graph is a con-
nected, bipartite graph of diameter 4 and girth 8. In this paper, we investigate the connection between
generalized quadrangles and octographic bipartite graph (shortly, O-graph), which are a class of bi-
partite graphs satisfying certain axioms regarding graph-theoretic properties of them. We prove that
every incidence graph of a generalized quadrangle is a O-graph. Also we obtain some properties of
O-graphs in terms of graph invariants. Finally, we conclude by discussing the implications of our
findings and potential avenues for future research in this area.
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1 Introduction

Let G = (V, E) be a simple graph where adjacency between vertices vi and vj is denoted
by vivj ∈ E(G) or vi ∼ vj. The distance between two vertices u,v ∈ V(G) is denoted as d(u,v).
This metric encapsulates the shortest length of paths connecting the vertices u and v within
the graph. The maximum eccentricity among the vertices of G is called the diameter, denoted
by diam(G), while the minimum eccentricity of its vertices is called the radius, denoted by
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rad(G). Let Nvi be the neighbor set of a vertex vi in V(G). The girth of a graph is defined as
the length of the shortest cycle in the graph. In other words, it is the length of the smallest cy-
cle in the graph. The common neighbour of vertices v1,v2, . . . vk is denoted as CN(v1, . . . ,vk),
and its cardinality is denoted as |CN(v1, . . . ,vk)|= cn(v1, . . . ,vk). A bipartite graph is a graph
whose vertex set forms two disjoint sets in which no two vertices within the same set are
adjacent. The Cartesian product of two graphs G = (VG, EG) and H = (VH, EH), denoted by
G × H, is a graph with vertex set VG × VH, where each vertex (u,v) is associated with a copy
of G and a copy of H. The edge set of G × H consists of all pairs of edges ((u1,v1), (u2,v2))

such that either u1 = u2 and there is an edge between v1 and v2 in H, or v1 = v2 and there is
an edge between u1 and u2 in G. A grid graph is the Cartesian product of two paths, and it
is denoted by Pn × Pm, where Pn is a path on n vertices and Pm is a path on m vertices. The
resulting grid graph has nm vertices and 2nm − n − m edges.

An incidence system of triples Γ = (P, L, I) is called a point-line geometry, where P and
L denote two sets of elements referred to as points and lines, respectively, and I ⊆ (P × L) ∪
(L × P) is a symmetric relation. A generalized n-gon is a point-line geometry such that the
incidence graph is a connected, bipartite graph of diameter n and girth 2n. [1]. Also there
are different types of definition of generalized n-gon. (see also [3–5] ). Tits [2] presents that
a generalized quadrangle is a generalized 4-gon. According to Payne et.al. [13], a general-
ized quadrangle manifests as a symmetrical structure that conforms to a point-line incidence
relation I, characterized by the following axioms:

• Every point is incident with exactly 1+ t lines, where t ≥ 1, and any two distinct points
are incident with at most one line.

• Every line is incident with exactly 1 + s points, where s ≥ 1, and any two distinct lines
are incident with at most one point.

• For any given point x and line L not incident with x, there exists a unique pair (y,z) of
points and lines respectively, such that x is incident with z, z is incident with y, and y is
incident with L.

The analogue definition of GQ is given by Maldeghem [5] as the following:
A weak generalized quadrangle (P, L, I) is a point-line incidence geometry satisfying the
following axioms:

• Every point is incident with at least two, but not all lines.

• Every line is incident with at least two, but not all points

• For every point x and every line L not incident with x, there is a unique incidence
point-line pair (y, M) with LIyIMIx.

Moreover, a (thick) generalized quadrangle is a weak generalized quadrangle satisfying the
additional following axiom:
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• Every point is incident with at least three lines and every line is incident with at least
three points.

In the study of finite geometries, generalized quadrangles play a significant role due to
their connections to many areas of mathematics, including group theory, algebraic geometry,
and combinatorics. It is also well known that the incidence graph of a generalized quadran-
gle is a bipartite graph that encodes the incidence relations between points and lines of the
geometry. Hence, generalized quadrangles have been extensively studied in graph theory,
particularly in the context of distance-regular graphs, strongly regular graphs, and other re-
lated combinatorial objects (see also [6–12]).

Given a generalized quadrangle, it can be more complicated to show the incidence graph
of it. Instead of that concept, the simpler concept can be useful in understanding the prop-
erties of the incidence graph of a generalized quadrangle. Thus we define a special type
of bipartite graph, called a bipartite octographic graph (shortly O-graph), has emerged as
a useful tool in the study of finite geometries. We investigate the connection between inci-
dence graphs of generalized quadrangles and O-graphs. We show that an O-graph is also a
graph of diameter 4 and girth 8 and obtain that incidence graph of a generalized quadrangle
is always a O-graph. Specifically, we give a construction of O-graph and prove that every
incidence graph of grid graphs is also O-graph.

2 Main Results

Definition 1. Let G = (V, E) be a bipartite graph with V = U ∪ W. The octographic bipartite
graph is a special bipartite graph satisfying the following axioms hold:

(C1.) For every w ∈ W, the degree of vertex w is greater than or equal 2.

(C2.) For every u1,u2 ∈ U, the number of common neighbours of u1 and u2, denoted by
cn(u1,u2), is less than or equal to 1.

(C3.) For u ∈ U, w ∈ W such that uw ̸∈ E, there is exactly one vertex x in N(u) such that
cn(x,w) = 1, where N(u) denotes the set of neighbours of u.

(C4.) There exists at least one pair of vertices x,y in U (or in W) such that cn(x,y) = 0.

Througout this paper we will use the notation O-graph for the octographic bipartite graph.

Remark 1. In Fig1, there are given two GQ’s. The first graph is 2 × 3 Grid graph. But it can
not be O- graph. Indeed, the vertices 1 and 5 have two common neighbours, thus it does not
satisfy the axiom C2 in Definition 1. Similarly, Doily graph shows a generalized quadrangle,
but it is not O-graph.

Lemma 2.1. Let G = (U ∪ W, E) be a octographic bipartite graph. For every pair of vertices p,q in
G, we have cn(p,q) ≤ 1.
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Figure 1. A 2 × 3 Grid and Doily Graph

Proof. If p,q ∈ U, then by (C2), cn(p,q) ≤ 1. Now assume that p,q ∈ W and cn(p,q) ≥ 2.
Then there exist at least two vertices in U, say ui and uj, such that p,q ∈ CN(ui,uj). Thus,
cn(ui,uj) ≥ 2, which contradicts (C2). Therefore, cn(p,q) ≤ 1. Let p ∈ U and q ∈ W and
cn(p,q) ≥ 1. Then there exists at least one vertex x ∈ CN(p,q), which is a neighbour of both
p and q. Hence, x ∈ U ∩ W, which contradicts the assumption that U ∩ W = ∅. Therefore,
cn(p,q) = 0.

Thus, for every pair of vertices p and q in G, cn(p,q) ∈ {0,1}.

Lemma 2.2. Let G = (U ∪ W, E) be a octographic bipartite graph with δ(G) ≥ 2. In this case,

i. For any u1,u2 ∈ U, we have d(u1,u2) ∈ {2,4}.

ii. For any w1,w2 ∈ W, we have d(w1,w2) ∈ {2,4}.

iii. For any u ∈ U and w ∈ W, we have d(u,w) ∈ {1,3}.

Proof.

i. Let G be a O-graph. In this case, due to (C2), for all u1,u2 ∈ U, cn(u1,u2) ≤ 1.
Case 1: Let cn(u1,u2) = 0. Then δ(G) ≥ 2, so there exist distinct w1,w2 ∈ N(u1) and

w3,w4 ∈ N(u2) such that w1 ̸= w2 and w3 ̸= w4. By (C2), u1w3 ̸∈ E, so there must be at least
one u3 ∈ U such that CN(w1,w3) = {u3}. A shortest path between u1 and u2 is u1 − w1 −
u3 − w3 − u2, which has a length of 4.

Case 2: Let cn(u1,u2) = 1. Then there exists a w ∈ W such that CN(u1,u2) = {w}. In this
case, a shortest path between u1 and u2 is simply u1 − w − u2, so d(u1,u2) = 2.

ii. Since G is a O-graph, by Lemma 2.1, for all uv ∈ G, cn(u,v) ≤ 1.
Let cn(w1,w2) = 0 for w1,w2 ∈ W. Then there exist distinct nodes u1,u2,u3,u4 ∈ U such

that N(w1) = {u1,u2} and N(w2) = {u3,u4} since δ(G) ≥ 2. Due to (C3), u1w2 ̸∈ E, so there
must be a vertex u5 ∈ U such that CN(w2,w3) = {u5}, where w3 is a neighbour of u1. The
shortest path between w1 and w2 is w1 − u1 − w3 − u5 − w2, which has a length of 4.

Let cn(w1,w2) = 1. Then there exists a node u ∈U such that N(w1,w2) = {u}. The shortest
path between w1 and w2 is w1 − u − w2, which has a length of 2.
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iii. Since G is a O-graph, for u ∈ U and w ∈ W, there are two cases. In case of u ∈ N(w), then
d(u,w) = 1. Now Let u ̸∈ N(w) and uw ̸∈ E, then due to (C3), there exists a unique vertex
v ∈ W with CN(w,v) = {k} and u ̸= k. So, the shortest path between u and w is u− v− k −w,
which has a length of 3.

Corollary 2.3. Let G be a O-graph. Then diam(G) = 4.

Proof. By Lemma 2.2, it is easy to see that no pair of vertices has distance greater than 4.
Hence diam(G) is 4.

Theorem 2.4. The girth of a O-graph is 8.

Proof. Now, assume that the girth of a Q graph is less than 8. This means that the shortest
cycle in the graph has length at most 6. Since the graph is bipartite, the shortest cycle must
have an even length. Therefore, the shortest cycle in the graph has length 4 or 6.

Let girth(G) = 4. Then G contains an u1 − w1 − u2 − w2 − u1 cycle such that u1,u2 ∈ U
and w1,w2 ∈ W. In this case, since w1,w2 ∈ CN(u1,u2), we get cn(u1,u2) ≥ 2. Hence this
contradicts axiom (C2).

Let girth(G) = 6 and let u1 − w1 − u2 − w2 − u3 − w3 − u1 be a cycle of length 6 such
that u1,u2,u3 ∈ U and w1,w2,w3 ∈ W. Hence for u1w2 /∈ E, there is a w1 in N(u1) such that
cn(w1,w2) = 0. But this contradicts the axiom (C3). Therefore, the assumption that the girth
of the O-graph is less than 8 leads to a contradiction. Hence, the girth of a O-graph graph is
8.

Proposition 2.5. There is no O-graph of order n ≤ 7.

Proof. First, note that for a O-graph G with n vertices, the size of the vertex set can be written
as n = 2k+ 1, where k is a positive integer. This is because the existence of a pair of vertices in
U or W with no common (as required by the fourth axiom of O-graphs) implies that |U| ≥ 2
and |W| ≥ 2.

Now, suppose there exists an O-graph G of order ≤ 7. Since n must be odd, we have
n = 3,5, or 7. We consider each case separately:

Case 1: n = 3.
Since G has only three vertices, it must be a tree or a cycle. However, neither a tree nor a

cycle satisfies the second axiom of O-graphs.
Case 2: n = 5
In this case, G must have two vertices in one partition and three in the other (assume two

vertices in U and three in W). Since G is a bipartite graph, the only possibility is a tree with
two vertices of degree 1 in W. However, this graph violates the first axiom of O-graphs.

Case 3: n = 7
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Suppose G has two vertices in U and five vertices in W. By the pigeon-hole principle, there
must be at least three vertices in W with a common neighbour in U. But this contradicts the
second axiom of O-graphs. Therefore, there is no O-graph of order ≤ 7.

Theorem 2.6. The O-graph of order 8 is isomorphic to cycle C8. That’s, there is no O-graph of order
8 except C8.

Proof. First, note that a O-graph of order 8 must have 4 vertices in each partition U and W.
Also, by axiom (C1), every vertex in W must have degree at least 2. Suppose there exists a
O-graph G of order 8 that is not isomorphic to C8. We will show that G cannot satisfy at least
one of axioms of O-graphs.

Since G is not isomorphic to C8, it must have a vertex of degree greater than 3. By axiom
(C1), this vertex must be in W. Without loss of generality, let this vertex be w1 ∈ W.

By axiom (C3) , for any u ∈ U such that uw1 ̸∈ E, there exists exactly one vertex x ∈ N(u)
such that cn(x,w1) = 1. Without loss of generality, let u1,u2 ∈ U be two non-adjacent vertices
such that u1 is adjacent to w1 and u2 is not. Then, u1 and u2 must have a common neighbour
x such that cn(x,w1) = 1. But this contradicts axiom (C2), which requires that the number of
common neighbours of any two vertices in U be at most 1.

Therefore, our assumption that there exists a O-graph of order 8 that is not isomorphic to
C8 leads to a contradiction, and we can conclude that there is no O-graph of order 8 except
C8.

Remark 2. Let G be a O-graph. Then there are at least four vertices in U such that cn(ui,uj,uk,ul) =

0. Moreover, there is at least four vertices in W such that cn(wi,wj,wk,wl) = 0. Therefore, we
get that |U| ≥ 4 and |W| ≥ 4.

Theorem 2.7. The incidence graph of a (weak) generalized quadrangle is an O-graph.

Proof. The incidence graph of a (weak) generalized quadrangle is a bipartite graph whose
vertices are the points and lines of the quadrangle, with two vertices adjacent if and only if
the corresponding point and line intersect.

Let w be a vertex in W, representing a line in the generalized quadrangle. Since any two
lines intersect in at most one point in a (weak) generalized quadrangle . Therefore, the degree
of the vertex w must be greater than or equal to 2, since it must be incident with at least two
points. So, axiom (C1) holds.

Let u1,u2 ∈ U, representing two points in the (weak) generalized quadrangle. Since any
two points lie on at most one line in a (weak) generalized quadrangle. Therefore, the number
of common neighbours of u1 and u2 in the incidence graph is either 0 or 1. So, axiom (C2)
holds.

Let u ∈ U and w ∈ W be such that uw /∈ E. Since there is exactly one line passing through
the point u and meeting line w in a (weak) generalized quadrangle. Let x be the point at
which this line intersects with another line incident with u, which is guaranteed to exist by
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the third axiom (C3). Then, x is the unique vertex in N(u) such that cn(x,w) = 1.

In a (weak) generalized quadrangle, there exist four points, no three of which are collinear.
Let x and y be two non-collinear points. Then, there is no line incident with both x and y, so
cn(x,y) = 0. Hence axiom (C4) is satisfied.

Therefore, the incidence graph of a (weak) generalized quadrangle is an O-graph.

Remark 3. The above theorem gives that incidence graphs of generalized quadrangles are also
O-graph. Since all grids are (weak) GQ, O graph can be consructed by the incidence graph
of the grid graphs. For instance, the incidence graph of 2 × 3 Grid graph gives the O graph
of order 11 (See Figure 2).
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Figure 2. 2 × 3 Grid and its incidence graph

Conclusion

In this paper, we investigate the connection between incidence graphs of generalized
quadrangles and O-graphs. We begin by providing a comprehensive introduction to gen-
eralized quadrangles and their incidence graphs, as well as O-graphs and their properties.
Then, we explore the conditions under which an incidence graph of a generalized quadran-
gle is an O-graph. Our results shed light on the relationship between these two types of
bipartite graphs and provide a new perspective on the structure of generalized quadrangles.

The definition of O-graph provides a way to study certain types of bipartite graphs with
specific properties. By defining the axioms that an O-graph must satisfy, we can identify and
study these graphs in a more systematic way. This can help in understanding the structural
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properties of O-graphs, their relationships to other types of graphs, and their applications in
various fields. Additionally, the definition of O-graphs allows us to establish certain results
and theorems that apply specifically to this type of graph.

References

[1] H. Van Maldeghem, An introduction to generalized polygons, InTits buildings and the model
theory of groups, Cambridge Univ Pr. 2002; pp. 23-57.

[2] J. Tits, Endliche Spiegelungsgruppen, die als Weylgruppen auftreten, Invent. Math. 43 (1977) 283–
295.

[3] A.E. Schroth, Topologische Laguerreebenen und Topologische Vierecke, Dissertation, Braun-
schweig, 1992.

[4] P. Abramenko, H. Van Maldeghemand, Characterizations of generalized polygons and opposition
in rank 2 twin buildings, Journal of Geometry, 74 (1-2) (2002) 7-28.

[5] H. Van Maldeghem, Generalized Polygons, Monographs in Math. 93, Birkhäuser Verlag, Basel,
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