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Abstract. A power graph is defined a graph that it’s vertices are the elements of group and
two vertices are adjacent if and only if one of them is a power of the other. Suppose A(X) is the
adjacency matrix of graph X. Then the polynomial χ(X,λ) = det(xI − A(X)) is called as characteristic
polynomial of X. In this paper, we compute the characteristic polynomial of all power graphs of order
p2q, where p,q are distinct prime numbers.
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1 Introduction

Kelarve and Quinn in [13] introduced the directed power graph of a semi-group. The
undirected power graph P(S) of a semigroup S is defined by Chakrabarty et al in which the
set of vertices is the elements of S and two distinct vertices are adjacent if and only if one of
them is a power of the other, see [5]. They proved that P(G) is a complete graph if and only if
G is a cyclic group of order pm, where p is a prime number and m is a positive integer and also,
they obtained a formula for the number of edges in a finite power graph. Cameron and Gosh
[3] proved non-isomorphic abelian groups don’t have isomorphic power graphs, but non-
abelian groups may have this condition. Ghorbani et al. in [9] determined the structure of
power graphs of all groups of order a product of three distinct prime numbers. By continuing
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this method, here we determine the characteristic polynomial of power graphs of groups of
order pq and p2q, where p,q are distinct prime numbers. The polynomial χ(X,λ) = det(xI −
A(X)) is called as characteristic polynomial of graph X.

Let x,y ∈ G be two arbitary elements such that there is an edge between them in P(G),
then for the smallest positive integer r, we have xr = y. Now, it is easy to see that {m ∈
N : xm = y} is the arithmetic progression with initial term r and common difference d = o(x)
denoted by AP(r,d). Let us to get A(X) is the arc set of a graph X and B = {(v,v) : v ∈ V(X)}.
We mean a function by a generalization on X as W : A(X) ∪ B → N ∪ {0} × N ∪ {0}.

2 Definitions and Preliminaries

Let (X1,W1) and (X2,W2) be to graphs equipped with two generalizations W1, W2 respec-
tively. Then the generalized product X1 ×W X2 is a graph with vertex set V(X1)×V(X2) and
(g1, g2) ∼ (g′1, g′2) if and only if the following two conditions hold simultaneously:

(i) (g1, g2) ̸= (g′1, g′2) and
(ii) AP(W1(g1, g′1)) ∩ AP(W2(g2, g′2)) ∩ N ̸= ∅ or
AP(W1(g′1, g1)) ∩ AP(W2(g′2, g2)) ∩ N ̸= ∅,
see [2] for more details.

Theorem 2.1. [2] Let G be a finite group. Then P(G) is complete graph if and only if G is a cyclic
group of order 1 or pm, for some prime number p and m ∈ N.

Theorem 2.2. [2] For two groups G1 and G2, P(G1 × G2) and P(G1)×W P(G2) are isomorphic
for some choice of generalizations W1 and W2 of P(G1) and P(G2) respectively.

Theorem 2.3. [7] The characteristic polynomial of the disjoint union of two graphs X1 and X2 is

χ(X1 ∪ X2,λ) = χ(X1,λ)χ(X2,λ).

Theorem 2.3 yields that if X1, X2, . . . , Xs are the components of the graph X, then

χ(X,λ) = χ(X1,λ)χ(X2,λ) . . . χ(Xs,λ).

Suppose X = X1 + X2 is the join graph of X1 and X2 with vertex set V(X) = ∪2
i=1V(Xi)

and edge set

E(X) = ∪2
i=1E(Xi) ∪ {(u,v)|u ∈ V(Xi),v ∈ V(Xj), (1 ≤ i, j ≤ 2)}.

Then, we have the following theorem.

Theorem 2.4. [7] Let X1, X2 be two graphs on respectively n1, n2 vertices. The characteristic
polynomial of X1 + X2 is

χ(X1 + X2,λ) = (−1)n2χ(X1,λ)χ(X̄2,−λ − 1) + (−1)n1χ(X2,λ)χ(X̄1,−λ − 1)

− (−1)n1+n2χ(X̄1,−λ − 1)χ(X̄2,−λ − 1).
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Suppose the numbers βi =
||Pi j||√

n , (i = 1, . . . ,m) are the main angles of graph Γ; they are

the cosines of the angles between eigenspaces and j, see [6]. Note that Σm
i=1β2

i = 1, because
Σm

i=1Pi j = j. Also, suppose µi are the distinct eigenvalues of X. Then we have the following
proposition.

Proposition 2.5. [7] For given graph X, we have

χ(K1 + X,λ) = χ(X,λ)(λ − Σm
i=1

nβ2
i

λ − µi
).

Theorem 2.6. [6] The characteristic polynomial of the power graph of the cyclic group Zn is

χ(P(Zn),λ) = χ(T,λ)(λ + 1)n−t−1,

where di’s (1 ≤ i ≤ t), are all non-trivial divisors of n,

T =


φ(n) φ(d1) φ(d2) . . . φ(dt)

φ(n) + 1 φ(d1)− 1 αd1d2 . . . αd1dt

φ(n) + 1 αd2d1 φ(d2)− 1 . . . αd2dt

. . . . . . . . . . . . . . .
φ(n) + 1 αdtd1 αdtd2 . . . φ(dt)− 1


and

αdidj =

{
φ(dj) di | dj or dj | di

0 otherwise
.

The coalescence graph X1.X2 of two graphs X1 and X2 obtained from disjoint union X1 ∪
X2 by identifying a vertex u of X1 with a vertex v of X2. In [6] it is proved that

χ(X1.X2,λ) = χ(X1,λ)χ(X2 − v,λ) + χ(X1 − u,λ)χ(X2,λ)− λχ(X1 − u,λ)χ(X2 − v,λ).

Now, suppose X1, X2 have respectively subgraphs S, S′ where S ∼= S′ and suppose X1(X2)

has a vertex u(v) adjacent to all vertices of S(S′). We can define the generelized coalescence
X1 ∗ X2 of two graphs X1, X2 by identifying the vertices of subgraph S with the vertices of
subgraph S′.

Theorem 2.7. [9] The characteristic polynomial of generelized coalescence X1 ∗ X2 is

χ(X1 ∗ X2,λ) = χ(X1,λ)χ(X2 − S,λ) + χ(X1 − S,λ)χ(X2,λ)

− χ(S,λ)χ(X1 − S,λ)χ(X2 − S,λ).

3 Main Results

It is well-known that up to isomorphism there are only two groups of order pq namely
Zpq and Fp,q (q|p − 1). Suppose G(p2,q) is the class of all groups of order p2q, where p and q
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are prime numbers. In [9, 10] it is proved that a group of order p2q is isomorphic with one of
the following structures:

Case 1. (p < q) Zp2q, Zp × Zp × Zq, Zp × Fq,p (p|q − 1), Fq,p2 (p2|q − 1), ⟨a,b : ap2
= bq =

1, a−1ba = bα, αp ≡ 1 (mod q)⟩.
Case 2. (q < p) Zp2q, Zp × Zq × Zp, Zp × Fp,q (q|p − 1), Fp2,q (q|p2 − 1), ⟨a,b, c : ap =

bq = cp = 1, ac = ca,b−1ab = aα,b−1cb = cαx
, αqc, x = 1, ...,q − 1⟩, ⟨a,b, c : ap = bq = cp = 1, ac =

ca,b−1ab= aαcβD,b−1cb= aβcα⟩, where α+ β
√

D = σp2−1/q, σ is a primitive element of GF(p2),
q ∤ p− 1 and q ̸= 2 whereas q|p+ 1. First, we recall that the number of generators of the abelian
group Zpq is φ(pq). This indicate that there is a clique of order φ(pq), where φ denotes the
Euiler’s function. The vertices of forms aip (1 ≤ i ≤ q − 1) and ajq (1 ≤ j ≤ p − 1), where a is
a generator of group yields two cliques of orders q − 1 and p − 1, respectively. By using the
structure of an abelian group, all of them are distinct. The structure of power graph P(Zpq)

is depicted in Figure 1. It should be noted that in Figure 1, K = Kφ(pq)+1.

Theorem 3.1. Suppose G ∼= Zpq = ⟨a⟩. Then P(G) ∼= Kφ(pq)+1 + (Kp−1 ∪ Kq−1).

K

Kp−1

Kq−1

Figure 1. The structure of power graph P(Zpq).

Corollary 3.2. Let α = (p − 1)(q − 1). The characteristic polynomial of graph P(Zpq) is

χ(X,λ) = χ(T,λ)(λ + 1)pq−3

where

T =

 α q − 1 p − 1
α + 1 q − 2 0
α + 1 0 p − 2

 .

Proof. Use Theorem 1.5.

Here, consider the Frobenius group Fp,q by presentation Fp,q = ⟨a,b : ap = bq = 1,b−1ab =

au⟩, where u is an element of order q in multiplicative group Z∗
p. One can see the elements

ai’s (1 ≤ i ≤ p − 1) and bj’s (1 ≤ j ≤ q − 1) respectively, introduce two cliques of orders p − 1
and q − 1. Consider the vertices bjai (1 ≤ i ≤ p − 1, 1 ≤ j ≤ q − 1), by the relation b−1ab = au.
We claim that

(bjai)m = bjmai(uj(m−1)+···+uj+1).
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Therefore, we can prove that o(bjai) = q that derive p − 1 distinct cliques of order q − 1.
Assume these elements are adjacent with ai’s. Then one can see that there exist an integer
1 ≤ m ≤ q − 1 such that (bjai)m = ai′ and so q | jm, a contradiction. By a similar way, we can
conclude these vertices are distinct from bj’s. The related graph is depicted in Figure 2.

To do this, let m = 1, then (yjxi)1 = yjxi(uj(1−1)) = yjxi. We have

(yjxi)m+1 = (yjxi) ∗ (yjxi)m = (yjxi) ∗ yjmxi(uj(m−1)+···+uj+1)

= y(m+1)jy−jmxiyjmxi(uj(m−1)+···+uj+1)

= y(m+1)jxi(ujm)xi(uj(m−1)+···+uj+1)

= y(m+1)jxi(ujm+···+uj+1).

We summarize the above results in the following theorem.

Theorem 3.3. Suppose G ∼= Fp,q. Then P(G)∼= K1 + (Kp−1 ∪ (∪p
i=1Kq−1)). The structure of power

graph P(Fp,q) is given in Figure 2.

Figure 2. The structure of power graph P(Fp,q).

Corollary 3.4. The characteristic polynomial of graph P(Fp,q) is

χ(X,λ) = (λ + 1)p(q−1)−2(λ − (q − 2))p−1(λ3 − (p + q − 4)λ2

− (2p + 2q − 5)λ + (p − 1)2(q − 1) + (p − 2)(q − 2)− 1)

Proof. Assume that X′ = (∪p
i=1Kq−1) ∪ Kp−1, then by using Theorem 2.2, we have χ(X′,λ) =

(λ + 1)p(q−1)−2(λ − (q − 2))p(λ − (p − 2)). On the ohert hand, by a simple method, we can
see that X̄′ = Kq−1,...,q−1,p−1. This implies that

χ(X̄′,λ) = λp(q−1)−2(λ + q − 1)p−1(λ2 − (p − 1)(q − 1)λ − p(p − 1)(q − 1)).

Now, apply Theorem 2.3 to complete the proof.

3.1 The structure of P(G), where |G| = p2q (p < q)

Suppose X1, . . . , Xn are n connected graphs. The graph Pn[X1, . . . , Xn] is a graph con-
structed by ∪n

i=1Xi in which every vertex of Xi is adjacent with every vertex of Xi+1 for
1 ≤ i ≤ n − 1.
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Theorem 3.5. Suppose G ∼= Zp2q = ⟨a⟩. Then

P(G) ∼= Kφ(p2q)+1 + P4[Kp2−1,Kp−1,Kpq−1,Kq−1].

Proof. For any non-trivial devisor d of p2q, the abelian group Zp2q has a cyclic subgroup of
order d. Therefore, the vertices of P(G) can be partitioned to five subsets. The elements
aipq (1 ≤ i ≤ p − 1), ajq (1 ≤ j ≤ p2 − 1), akp2

(1 ≤ k ≤ q − 1), atp (1 ≤ t ≤ pq − 1) and the
generators of G. By using Theorem 2.1, we acheive five cliques of orders p − 1, p2 − 1, q − 1,
pq − 1 and φ(p2q), respectively. Now by applying the following relations, we can describe
adjacency between different cliques:

⟨aipq⟩ ⊆ ⟨atp⟩, ⟨ajq⟩, ⟨atp⟩ ⊆ ⟨akp2⟩, ⟨aiq⟩ ⊆ ⟨akp2⟩.
The structure of power graph P(G) is depicted in Figure 3. This completes the proof.

K

Kp−1

Kq−1

Kpq−1

Kp2−1

Figure 3. The structure of power graph P(Zp2q).

Corollary 3.6. The characteristic polynomial of graph P(Zp2q) is

χ(X,λ) = χ(T,λ)(λ + 1)p2q−5

where

T =


α p − 1 q − 1 γ β

α + 1 p − 2 0 γ β

α + 1 0 q − 2 0 β

α + 1 p − 1 0 γ − 1 0
α + 1 p − 1 q − 1 0 β − 1


α = p(p − 1)(q − 1), β = (p − 1)(q − 1) and γ = p(p − 1).

Proof. Use Theorem 2.4.
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Theorem 3.7. Let
G ∼= Zp × Zpq = ⟨x,y : xp = ypq = 1, xy = yx⟩.

Then P(G) = K1 + (X1 ∗ X2 ∗ · · · ∗ Xp+1), where

Xi = Kpq−p−q+1 + (Kp−1 ∪ Kq−1) (1 ≤ i ≤ p + 1).

Proof. In the first step, we can consider the following generalization W1 of P(G1) as:

W1(x,z) =
{
(r,o(x)) i f r is the smallest positive integer such that xr = z
(0,0) otherwise

and the generalization W2 of P(G2), similarly. Then by using Theorem 1.2, we get our result.
The structure of power praph of this group is as shown in Figure 4.

Figure 4. The structure of power graph P(Zp × Zpq).

Corollary 3.8. By above notation the characteristic polynomial of graph X = X1 ∗ X2 ∗ · · · ∗ Xp+1 is

χ(X,λ) = (λ + 1)p(pq−1)−4(λ − (pq − q − 1))p(λ3 − (pq − 4)λ2

− (pq((p − 1)(q − 2) + 1) + p2 + q − 6)λ

+ (p + 1)((p − 1)2(q − 1)2 − (p + q − 3))

− p(q − 2)(pq − q − 1)).

Proof. Assume that Xi = Kpq−p−q+1 + (Kp−1 ∪ Kq−1) (1 ≤ i ≤ p + 1), then by using Theorem
2.3, we have

χ(Xi,λ) = (λ + 1)pq−4(λ3 − (pq − 4)λ2 − ((p + 1)(q + 1)− 7)λ

+ (p − 1)(q − 1)(pq − p − q) + (p − 2)(q − 2)).

The characteristic polynomial of K1 + (X1 ∗ X2 ∗ · · · ∗ Xp+1) follows immediately from the
Theorem 2.5 and Proposition 2.1.
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Theorem 3.9. Let

G ∼= Zp × Fq,p (p|q − 1) = ⟨a,b, c : ap = bq = cp = 1, c−1bc = bu⟩,

where up ≡ 1 (mod q). Then

P(G) = K1 + ((Kpq−p−q+1 + (Kp−1 ∪ Kq−1)) ∪ (∪pq
i=1Kp−1)).

Proof. The proof is similarto that of Theorem 2.4. The structure of these power garph is
depicted in Figure 5.

Figure 5. The power graph P(Zp × Fq,p).

Corollary 3.10. The characteristic polynomial of graph X = P(Zp × Fq,p) is

χ(X,λ) = (λ + 1)pq(p−1)−4(λ − (p − 2))pq−1(λ5 − (pq + p − 6)λ4

+ αλ3 + βλ2 + γλ + δ,

where α = (2pq + q − 3)(p − 1)− 4p(q + 1) + 14, β = (p − 1)2(q − 1)2 + (p − 3)(pq + p + q −
6) + (p − 2)(pq + q − 6) − (p − 1)(p2q2 − 7pq + 11) − 2q and γ = (p − 1)(pq − 1)(−2pq +

7) + (p − 1)(q − 1)(3(p − 1)(q − 2)− 1) + (p − 2)(3p + 4q − 12), δ = (p − 1)2(pq − 6) + (p −
1)(q − 1)(−p((pq − p − q)2 + 2pq)− 5) + 3pq2(p − 1)− 1).

Proof. In view of Theorem 1.4, it is sufficent to consider that X1
∼= Kpq−p−q+1 + (Kp−1 ∪ Kq−1)

and X2
∼= X1 ∪ (∪pq

i=1Kp−1), then

χ(X1,λ) = (λ + 1)pq−4(λ3 − (pq − 4)λ2 − ((p + 1)(q + 1)− 7)λ

+ (p − 1)(q − 1)(pq − p − q) + (p − 2)(q − 2)).

Hence, Therorem 2.2 yields

χ(X2,λ) = (λ + 1)pq(p−1)−4(λ − p + 2)pq(λ3 − (pq − 4)λ2 − (pq + p + q − 6)λ

+ (p − 1)(q − 1)(pq − p − q) + (p − 2)(q − 2)).

On the other hand, the structure of X2 implies that

X̄2
∼= (K̄pq−p−q+1 ∪ Kp−1,q−1) + Kp−1,...,p−1
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and thus

χ(X̄2,λ) = λpq(p−1)−4(λ + p − 1)pq−1(λ4 + (pq − 1)(p − 1)λ3

+ ((p − 1)((pq − 1)(pq − 2)− q + 1))λ2

+ ((p − 1)2(q − 1)(pq − 3))λ

+ (p − 1)(pq − 2)((p − 1)2(q − 1)2 − 2p − 2q + 6)).

Suppose G ∼= Fq,p2 (p2|q − 1) = ⟨x,y : xq = yp2
= 1,y−1xy = xu⟩, then by the presentation

of the group G and by a similar argument, we can conclude the following theorem.

Theorem 3.11. Suppose G ∼= Fq,p2 (p2|q − 1) = ⟨x,y : xq = yp2
= 1,y−1xy = xu⟩, where up2 ≡

1 (mod q). Then
P(G) = K1 + ((∪q

i=1Kp2−1) ∪ Kq−1).

We can see the structure of it’s power garph is as given in Figure 6.

Figure 6. The power graph P(Fq,p2).

Corollary 3.12. The characteristic polynomial of graph X = P(Fq,p2) is

χ(X,λ) = (λ + 1)q(p2−1)−2(λ − (p2 − 2))q−1(λ3 − (p2 + q − 4)λ2

− (2p2 + 2q − 5)λ + q2(p2 − 1)− p2(q + 1) + 2)

Proof. Assume that X′ = (∪q
i=1Kp2−1)∪ Kq−1, then by using Theorem 1.3, we have χ(X′,λ) =

(λ + 1)q(p2−1)−2(λ − (p2 − 2))q(λ − (q − 2)). On the ohert hand, by a simple method, we can
see that X̄′ = Kp2−1,...,p2−1,q−1. This implies that

χ(X̄′,λ) = (λ)q(p2−1)−2(λ + p2 − 1)q−1(λ2 − (q − 1)(p2 − 1)λ − q(q − 1)(p2 − 1)).

Now apply Theorem 1.4 to complete the proof.

Theorem 3.13. Let G ∼= ⟨a,b : ap2
= bq = 1, a−1ba = bα⟩, where αp ≡ 1 (mod q). Then P(G) =

K1 + (((∪q
i=1Kp2−p) + Kp−1) ∗ (Kpq−p−q+1 + (Kp−1 ∪ Kq−1))).
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Proof. In this group, the elements ai (1 ≤ i ≤ p2 − 1), bj (1 ≤ j ≤ q − 1) compose two cliques
of orders p2 − 1 and q − 1, respectively. The elements aibj (1 ≤ i ≤ p2 − 1), (1 ≤ j ≤ q − 1)
satisfy in relation (aibj)m = aimbj(αi(m−1)+···+αi+1) and we can consider two following cases:

Case 1. Assume i ̸= kp, then o(aibj) = p2 yields q− 1 cliques of order p2 − p. We can prove
that (aibj)lp = ailp (1 ≤ l ≤ p − 1) that implies these vertices are adjacent with the elements
ai (i = kp)’s.

Case 2. If i = kq, then o(aibj) = pq, (aibj)lp = bm (1 ≤ m ≤ q − 1), (1 ≤ l ≤ p − 1) and
(aibj)tq = aitp. Therefore, we acheive a clique of order pq − p − q + 1 in which their vertices
are adjacent with the elements ai’s (i = kq) and bj’s. The structure of power graph P(G) is
depicted in Figure 7.

Figure 7. The structure of power graph P(G).

Corollary 3.14. The characteristic polynomial of graph

X = P(⟨a,b : ap2
= bq = 1, a−1ba = bα⟩)

is

χ(X,λ) = (λ + 1)q(p2−1)−4(λ − (p2 − p − 1))q−1(λ4 − (p(p + q − 1)− 5)λ3

+ ((p(p − 3)− 1)(q − 1)− 3(p2 − 3))λ2 + αλ + β

where α = (q − 1)(q(p − 1)2 − 2) + pq(p − 1)(pq(p − 1)− p2 + 2) + (p − 1)(p2 − 5p − 3) + 5
and β = pq(p − 1)2(pq − p − 1)− (p2 − p − 1)(p − 1)2(q − 1)2 + (p2 − p − 1)(p + q − 3).

Proof. Assume X1
∼= (∪q

i=1Kp2−p) + Kp−1 and X2
∼= Kpq−p−q+1 + (Kp−1 ∪ Kq−1), then

χ(X1,λ) = (λ + 1)q(p2−p−1)+p−2(λ − (p2 − p − 1))q−1(λ2

− (p2 − 3)λ − (p2 − 2)− p(p − 1)2(q − 1))

and

χ(X2,λ) = (λ + 1)pq−4(λ3 − (pq − 4)λ2 − (pq + p + q − 6)λ

+ (p − 1)(q − 1)(pq − p − q) + (p − 2)(q − 2)).

On the other hand, X1 −Kp−1 = ∪q
i=1Kp2−p, X2 −Kp−1 = Kpq−p and by Theorem 2.5 the proof

is complete.
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3.2 The power graphs of groups of order p2q where p > q

In this section, we apply a similar methods given in the last section to determine the
structure of P(G), where G is isomorphic to a finite group of order p2q, where p > q. The
power graphs of groups Zp2q, Zp × Zq × Zp, Zp × Fp,q and Fp2,q are given in Theorems 3.1-
3.3. In what follows, we explain how we compute the power graphs of the other groups of
this order.

Theorem 3.15. Suppose

G ∼= ⟨a,b, c : ap = bq = cp = 1, ac = ca,b−1ab = aα,b−1cb = cαx⟩,

where αq ≡ 1 (mod p), x = 1, . . . ,q − 1. Then

P(G) = K1 + ((∪p+1
i=1 Kp−1) ∪ (∪p2

i=1Kq−1)).

Proof. The vertices corresponded to the elements ai’s (1 ≤ i ≤ p − 1), bj’s (1 ≤ j ≤ q − 1) and
ck’s (1 ≤ k ≤ p − 1) compose three cliques of order respectively, p − 1, q − 1 and p − 1. For
elements bjai’s (1 ≤ i ≤ p − 1, 1 ≤ j ≤ q − 1), by using the relation b−1ab = aα and (bjai)m =

bjmai(αj(m−1)+···+αj+1), we obtain o(bjai) = q which yields p− 1 cliques of order q− 1. Consider
now the elements aick’s (1 ≤ i,k ≤ p − 1). The relation ac = ca yields o(aick) = p and then
we acheive p − 1 cliques of order p − 1. By the structure of group G, the elements bjck’s
(1 ≤ j ≤ q − 1, 1 ≤ k ≤ p − 1) form p − 1 cliques of order q − 1 and the relation b−1cb = cαx

verify that these vertices are distinct from other elements. The elements ckbjai (1 ≤ i,k ≤
p − 1, 1 ≤ j ≤ q − 1) are of order q, hence by using induction we get that

(ckbjai)m = ckmbjmai(uj(m−1)+···+uj+1).

Thus, we have (p − 1)2 new cliques of order q − 1. Also, the relations of group yield these
vertices are distinct from the other vertices. The structure of power graph of G is depicted in
Figure 8.

Figure 8. The structure of power graph P(G).
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Corollary 3.16. The characteristic polynomial of graph

X = P(⟨a,b, c : ap = bq = cp = 1, ac = ca,b−1ab = aα,b−1cb = cαx⟩)

is

χ(X,λ) = (λ + 1)p2(q−1)−p−2(λ − (p − 2))p(x − (q − 2))p2−1(λ3 − (p + q − 4)λ2

− (p(p2 − 1)− (p − 2)(q − 2) + q − 1)λ + (p2 − 1)((p − 1)2 + q − 1)

+ (p − 2)(q − 2)− p3 + 2p − 2)

Proof. First apply Theorem 1.3, to compute the characteristic polynomial of Y ∼= (∪p+1
i=1 Kp−1)∪

(∪p2

i=1Kq−1) as follows

χ(Y,λ) = (λ + 1)p2(q−1)−p−2(λ − (p − 2))p+1(λ − (q − 2))p2
.

Also, we can see Ȳ = Kp−1,...,p−1 + Kq−1,...,q−1 and

χ(Ȳ,λ) = λp2(q−1)−p−2(λ + p − 1)p(λ + q − 1)p2−1(λ2

− (p3 − 2p + 1)λ − (p2 − 1)((p − 1)2 + q − 1)).

Now use Theorem 1.4 to complete the proof.
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