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Abstract. The symmetric division deg index (or simply SDD) was proposed by Vukičević et al.
as a remarkable predictor of the total surface area of polychlorobiphenyls. We are interested in how
the SDD of a graph changes when edges are deleted. The obtained results show that all cases are
possible: increased, decreased, and unchanged. In this article, we present some necessary conditions
for the occurrence of each of the three different states.
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1 Introduction

Throughout this paper, let G(V, E) be a simple graph with vertex set V(G) and edge
set E(G). An edge e ∈ E(G) with end vertices u and v is denoted by uv. In a graph G, the
neighborhood NG(v) or briefly Nv of a vertex v is the set of all vertices adjacent to v. Let e =
uv ∈ E(G), we denote by Nv

u , the set of all vertices adjacent to u, except v, i.e. Nv
u = Nu \ {v}.

The degree d(vi) (or simply di) of a vertex vi is the number of edges incident on vi. The
smallest and the largest degrees of graph G are denoted by δ(G) and ∆(G), respectively. If
∆(G) = δ(G), then G is called a regular graph. A graph is (m,n)-semiregular if it is bipartite
with a bipartition {V1, V2} in which each vertex of V1 has degree m and each one of V2 has
degree n.
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Molecular descriptors, which are numerical functions of molecular structure, play an im-
portant role in mathematical chemistry. They are used in QSAR and QSPR studies to study
and predict the biological or chemical properties of molecules [4]. Topological indices, which
are numerical functions of the underlying molecular graph, are an important group of these
descriptors. The symmetric division degree index (SDD(G)) of a graph G introduced by
Vukičević and Gašperov, is one of the 148 so-called Adriatic indices, with a good predictive
power for the total surface area of polychlorobiphenyl [23]. It is defined as

SDD = SDD(G) = ∑
vivj∈E(G)

d2
i + d2

j

didj
,

where di is a degree of vertex vi. Also in [8] Ghorbani and Alidehi-Ravandi defined an ec-
centric version of the SDD index and gave some properties of it. The importance and ap-
plication of the SDD, have caused many studies to be carried out in recent years. In some
of them, the ability of this index to predict the properties of chemical structures has been
investigated [6, 7, 14, 16, 19], and some others, have found graphs with extremal SDD in-
dex [1, 11, 13, 15, 18, 20, 22, 24]. Also, some researchers have focused on finding the bound for
SDD of graphs [2, 5, 9, 12, 17, 21].

In a different work, Gupta et al. focused on SDD and graph operations such as join,
corona product, cartesian product, composition, and symmetric difference of graphs [10].

In this article, we examine the effect of edge removal as another graph operation on the
SDD index. In some special graphs, we get the exact value of this change and in some cases,
we find a bound for it.

2 Edge deletion

In this section, we will determine the amount of change in the SDD index of graphs when
an edge is removed from the graph G. Studies show that this index may increase or decrease
or even remain unchanged by removing the edge. For example, consider the graph G as
depicted in Figure 1. It is not difficult to see that SDD(G \ e) = SDD(G).

According to the definition of SDD, the sum is taken over all edges. Therefore, removing
the edge e = uv from graph G, only changes the amount of SDD in the components cor-
responding to the edges leading to u and v, and the other components of the sum, remain
unchanged. It means that if uw ∈ E(G), the component related to this edge changes from
dw
du

+ du
dw

in the SDD(G) to dw
du−1 +

du−1
dw

in the SDD(G \ e). Therefore, for this edge, the SDD
decreases by du

dw
− du−1

dw
= 1

dw
and increases by dw

du−1 −
dw
du

= dw
du(du−1) . Now, if we calculate these

values for all edges leading to u and v, the amount of decrease in SDD(G \ e) is equal to

du

dv
+

dv

du
+ ∑

vr∈Nv
u

1
dr

+ ∑
vs∈Nu

v

1
ds

=
du

dv
+

dv

du
+ ∑

vi∈Nv
u∪Nu

v

1
di

,
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and the amount of increase is

∑
vr∈Nv

u

dr

du(du − 1)
+ ∑

vs∈Nu
v

ds

dv(dv − 1)
.

In the following, for convenience, we set m = du and n = dv. So we have

SDD(G \ e) = SDD(G) + α, (1)

where

α = ∑
vr∈Nv

u

dr

m(m − 1)
+ ∑

vs∈Nu
v

ds

n(n − 1)
− m

n
− n

m
− ∑

vi∈Nv
u∪Nu

v

1
di

.

It is clear that α = 0, α > 0, and α < 0 indicate no change, increase, and decrease of SDD, after
edge removal, respectively. In the following, we obtain bounds for α and find its exact value
for some special categories of graphs.

Figure 1. A graph G with SDD(G \ e) = SDD(G).

Theorem 2.1. Let G be a graph and e = uv ∈ E(G) such that the sum of degrees of all vertices
connected to u is less than or equal to m(m − 1), and also the sum of degrees of all vertices connected
to v is less than or equal to n(n − 1). Then

SDD(G \ e) < SDD(G).

Proof. If ∑vr∈Nv
u

dr ≤ m(m − 1) and ∑vs∈Nu
v

ds ≤ n(n − 1), then

∑
vr∈Nv

u

dr

m(m − 1)
≤ 1 and ∑

vs∈Nu
v

ds

m(m − 1)
≤ 1.

Since m
n + n

m ≥ 2, for all real numbers m and n we have

α = ∑
vr∈Nv

u

dr

m(m − 1)
+ ∑

vs∈Nu
v

ds

n(n − 1)
− m

n
− n

m
− ∑

vi∈Nv
u∪Nu

v

1
di

≤ − ∑
vi∈Nv

u∪Nu
v

1
di

.

Therefore, from Equality (1) we obtain that SDD(G \ e) ≤ SDD(G).
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Corollary 2.2. Let G be a graph and e = uv ∈ E(G) such that the degree of any vertex connected to
u is less than or equal to du, and also the degree of any vertex connected to v is less than or equal to
dv. Then

SDD(G \ e) < SDD(G).

Theorem 2.3. Let G be a graph and e = uv ∈ E(G), with du = dv = m.
(i) If the degree of all vertices connected to u and v is less than or equal to m, then

SDD(G \ e) < SDD(G).

(ii) If the degree of all vertices connected to u and v is greater than or equal to 2m, then

SDD(G \ e) > SDD(G).

(iii) If the summation of degrees of all vertices connected to u and v is less than or equal to 2m(m− 1),
then

SDD(G \ e) < SDD(G).

Proof. If du = dv = m, then Equality (1) yields that

α = ∑
vr∈Nv

u

dr

m(m − 1)
+ ∑

vs∈Nu
v

ds

m(m − 1)
− 2 − ∑

vi∈Nv
u∪Nu

v

1
di

. (2)

(i) If dw ≤ m for all w ∈ N(u) ∪ N(v), then

∑
vr∈Nv

u

dr

m(m − 1)
≤ 1 and ∑

vs∈Nu
v

ds

m(m − 1)
≤ 1.

So we have that α ≤ −∑vi∈Nv
u∪Nu

v
1
di

, which implies that SDD(G \ e) ≤ SDD(G).
(ii) If dw ≥ 2m for all w ∈ Nv

u ∪ Nu
v , then

∑
vr∈Nv

u

dr

m(m − 1)
≥ 2 and ∑

vs∈Nu
v

ds

m(m − 1)
≥ 2.

So from Equality (2) we have that

α ≥ 2 − ∑
vi∈Nv

u∪Nu
v

1
di

.

On the other hand

∑
vi∈Nv

u∪Nu
v

1
di

≤ 2m − 2
2m

≤ 1,

which gives that α ≥ 1, and so SDD(G \ e) > SDD(G).
(iii) If ∑vi∈Nv

u∪Nu
v

di ≤ 2m(m − 1), then we have

∑
vr∈Nv

u

dr

m(m − 1)
+ ∑

vs∈Nu
v

ds

m(m − 1)
≥ 2.
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And Equality (2) yields that

SDD(G \ e) ≤ SDD(G)− ∑
vi∈Nv

u∪Nu
v

1
di

,

which gives the desired result.

From Theorem 2.3 (i), we have the following corollary.

Corollary 2.4. Let G be a regular graph, for all e ∈ E(G). Then

SDD(G \ e) = SDD(G)− 2(m − 1)
m

.

Corollary 2.5. Let G be a graph, and e = uv ∈ E(G) with du = dv = ∆. Then

SDD(G \ e) ≤ SDD(G).

Recall that a semiregular graph, also known as a biregular graph, is a bipartite graph
G in which every two vertices on the same side of the bipartition have the same degree.
Specifically, if the degree of the vertices in one partition is m and the degree of the vertices in
the other partition is n, we say that the graph is (m,n)-semiregular [3].

Theorem 2.6. Let G be an (m,n)-semiregular graph, for all e ∈ E(G). Then

SDD(G \ e) = SDD(G)− n − 1
m

− m − 1
n

.

Proof. For (m,n)-semiregular graph, we have that

∑
vr∈Nv

u

dr

m(m − 1)
=

n
m

and ∑
vs∈Nu

v

ds

n(n − 1)
=

m
n

.

So from Equality (1) we have

α = − ∑
vi∈Nv

u∪Nu
v

1
di

= −n − 1
m

− m − 1
n

.

Theorem 2.7. Let G be a graph and e = uv ∈ E(G), with du = dv = m and the degree of all vertices
connected to u and v is equal to k.

(i) If k = m+
√

m(5m−4)
2 , then

SDD(G \ e) = SDD(G).

(ii) If k < m+
√

m(5m−4)
2 , then

SDD(G \ e) < SDD(G).

(iii) If k > m+
√

m(5m−4)
2 , then

SDD(G \ e) > SDD(G).

141



Amraei et al./ Journal of Discrete Mathematics and Its Applications 8 (2023) 137–145

Proof. Let G be a graph and e = uv ∈ E(G), with du = dv = m and the degree of all vertices
connected to u and v is equal to k. Consider

α =
2k
m

− 2 − 2(m − 1)
k

=
2k2 − 2mk − 2m(m − 1)

mk
.

(i) If k = m+
√

m(5m−4)
2 , then α= 2k2−2mk−2m(m−1)

mk = 0 and we have that SDD(G \ e) = SDD(G).

(ii) If k < m+
√

m(5m−4)
2 , then α= 2k2−2mk−2m(m−1)

mk < 0, which yields that SDD(G \ e)< SDD(G).

(iii) Similarly k >
m+

√
m(5m−4)
2 , results that α = 2k2−2mk−2m(m−1)

mk > 0 and so we have that
SDD(G \ e) > SDD(G).

Example 2.8. In Theorem 2.7, when m = 4 and k = 6, we obtain a family of graphs where SDD(G \
e) = SDD(G). This implies that for any graph G containing the graph depicted in Figure 2. as a
subgraph (with the degree of the vertices adjacent to the two ends of edge e remaining unchanged), we
have SDD(G \ e) = SDD(G).

Figure 2. All graphs containing this graph, have SDD(G \ {e}) = SDD(G).

Theorem 2.9. Let G be a graph with maximum degree ∆ and minimum degree δ and e = uv ∈ E(G).
Then

δ − n
m

+
δ − m

n
− n + m − 2

δ
≤ SDD(G \ {e})− SDD(G) (3)

≤ ∆ − n
m

+
∆ − m

n
− n + m − 2

∆
,

and equalities hold if and only if G is a regular graph.

Proof. It is easy to see that

∑
vr∈Nv

u

dr

m(m − 1)
+ ∑

vs∈Nu
v

ds

n(n − 1)
≥ δ

m
+

δ

n
,

and

∑
vi∈Nv

u∪Nu
v

1
di

≤ n + m − 2
δ

.
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Therefore

∑
vr∈Nv

u

dr

m(m − 1)
+ ∑

vs∈Nu
v

ds

n(n − 1)
− m

n
− n

m
− ∑

vi∈Nv
u∪Nu

v

1
di

≥ δ

m
+

δ

n
− m

n
− n

m
− n + m − 2

δ
.

Using this and Equality (1) yield the left hand side of Inequality (3).
Also

∑
vr∈Nv

u

dr

m(m − 1)
+ ∑

vs∈Nu
v

ds

n(n − 1)
≤ ∆

m
+

∆
n

,

and

∑
vi∈Nv

u∪Nu
v

1
di

≥ n + m − 2
∆

.

So

∑
vr∈Nv

u

dr

m(m − 1)
+ ∑

vs∈Nu
v

ds

n(n − 1)
− m

n
− n

m
− ∑

vi∈Nv
u∪Nu

v

1
di

≤ ∆
m

+
∆
n
− m

n
− n

m
− n + m − 2

∆
.

So from Equality (1), we have the right hand side of Inequality (3) and the proof is complete.

3 Conclusion

In this study, we have examined the impact of edge deletion on the SDD index of graphs.
Our primary findings demonstrate that the SDD may increase, decrease, or remain unchanged
following the removal of an edge, contingent upon the degree sequences of the vertices in-
cident to the edge. We have presented necessary conditions and explicit formulas for the
SDD changes in specific graph types, such as regular and semiregular graphs. Our research
prompts several crucial questions for future investigation. Can explicit formulas be derived
for the SDD changes in other graph families? Can we establish necessary and sufficient con-
ditions for the SDD to exhibit increases, decreases, or remain unchanged after the deletion of
an edge in more general classes of graphs? Furthermore, can we explore the impact of other
graph operations, such as edge addition and vertex deletion, on the SDD? In summary, our
study contributes significantly to the field of graph theory by advancing our comprehension
of the SDD and its responsiveness to alterations in graph structure. We anticipate that our
findings will stimulate further research into the behavior of graph invariants under diverse
graph operations, fostering new insights and advancements in graph theory.
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