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1 Introduction

In, DNA is found naturally as a double stranded molecule, with a form similar to a twisted
ladder. The backbone of the DNA helix is an alternating chain of sugars and phosphates,
while the association between the two strands is variant combinations of the four nitrogenous
bases adenine (A), thymine (T), guanine (G) and cytosine (C). The two ends of the strand are
distinct and are conventionally denoted as 3′ end and 5′ end. Two strands of DNA can form
(under suitable conditions) a double strand if the respective bases are Watson- Crick [17]
complements of each other - A matches with T and C matches with G, also 3′ end matches
with 5′ end.

The problem of designing DNA codes (sets of words of fixed length n over the alpha-
bets {A,C, G, T} ) that satisfy certain combinatorial constraints has applications for reliably
storing and retrieving information in synthetic DNA strands. These codes can be used in
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particular for DNA computing [1] or as molecular bar-codes.
There are many researchers doing research on code over finite rings. In particular, codes

over Z4 received much attention [2–5,9,11,15,16]. The covering radius of binary linear codes
were studied [4,5]. Recently the covering radius of codes over Z4 has been investigated with
respect to chinese euclidean distances [14]. In 1999, Sole et al gave many upper and lower
bounds on the covering radius of a code over Z4 with chinese euclidean distances. In [5, 13],
the covering radius of some particular codes over Z4 have been investigated.

In this correspondence, consider a finite ring N. In this paper, Investigate the covering
radius of the Simplex DNA codes of both types and MacDonald DNA codes and repetition
DNA codes over N. Also generalized some of the known bounds in [2].

2 Preliminary

Coding theory has several applications in Genetics and Bioengineering. The problem of
designing DNA codes (sets of that words of fixed length n over the alphabet N = {A,C, G, T}
that satisfy certain combinatorial constraints) has applications for reliably storing and retriev-
ing information in synthetic DNA strands.

A DNA code of length n is a set of codewords (x1, x2, · · · , xn) with xi ∈ {A,C, G, T} =

N(representing the four nucleotides in DNA). Use a hat to denote the Watson-Crick comple-
ment of a nucleotide, so A matches with T and C matches with G.

The DNA codes are sets of words of fixed length n over the alphabet N = {A,C, G, T} and
it follows the map A → 0,C → 1, T → 2 and G → 3. Therefore the problem of the DNA codes
is corresponding to the problem of the Z4-linear codes. These transpositions do not affect the
GC-weight of the codeword (the number of entries that are C or G). In my work, by using the
above map in Z4 with chinese euclidean weight, so obtain the covering radius for repetition
DNA codes .

Let d = (d1,d2, · · · ,dn) ∈ Nn and n be its length. Let b be an element of {A,C, G, T}. For
all d = (d1,d2, · · · ,dn) ∈ Nn, define the weight of d at b to be wb(d) = |{i|xi = b}|.

A DNA linear code C of length n over N is an additive subgroup of Nn. An element of C
is called a DNA codeword of C and a generator matrix of C is a matrix whose rows generate
C.

In [14], the chinese Euclidean weight w(x) of a vector x is ∑n
i=1

{
2 − 2cos

(
2πxi

4

)}
.

A linear Gray map φ from N4 →Z2
2 is defined by φ(x+ 2y) = (y, x+ y), for all x+ 2y ∈N.

The image φ(C), of a linear code C over N of length n by the Gray map is a binary code of
length 2n with same cardinality [15].

Any DNA linear code C over N is equivalent to a code with Generator Matrix(GM) of the
form

GM =

[
Ik0 A B
0 2Ik1 2D

]
, where A, B and D are matrices over N.

Then the DNA code C contain all DNA codewords [v0,v1]GM, where v0 is a vector of
length k1 over N and v1 is a vector of length k2 over Z2. Thus C contains a total of 4k12k2
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codewords. The parameters of C are given
[
n,4k12k2 ,d

]
, where d represents the minimum

chinese Euclidean distance of C.
A DNA linear code C over N of length n, 2-dimension k, minimum chinese euclidean

distance d is called an [n,k,dCE] or simply an [n,k,d] code.
In this paper, define the covering radius of dna codes over N with respect to chinese

euclidean distance and in particular study the covering radius of Simplex DNA codes of
type α and type β namely, Sα

k and Sβ
k and their MacDonald DNA codes and repetition DNA

codes over N. Section 2 contains basic results for the covering radius of DNA codes over N.
Section 3 determines the covering radius of different types of repetition DNA codes. Section
4 determines the covering radius of Simplex DNA codes and finally section 5 determines the
bounds on the covering radius of MacDonald DNA codes.

3 Covering radius of repetition DNA codes

Let d be a chinese euclidean distance a DNA code C over N. Thus, the covering radius of
C :

rd(C) = max
u∈Nn

{
min
c∈C

{d(c,u)}
}

.

The following result of Mattson [6] is useful for computing covering radius of codes over
rings generalized easily from codes over finite fields.

If C0 and C1 are codes over N generated by matrices GM0 and GM1 respectively and if C

is the code generated by GM =

(
0 GM1

GM0 A

)
then rd(C)≤ rd (C0)+ rd (C1) and the covering

radius of D (concatenation of C0 and C1) satisfy the following rd(D) ≥ rd (C0) + rd (C1) , for
all distances d over N.

A q-ary repetition code C over a finite field Fq =
{

α0 = 0,α1 = 1,α2,α3, · · · ,αq−1
}

is an

[n,1,n] code C =
{

ᾱ | α ∈ Fq
}

, where ᾱ = (α,α, · · · ,α). The covering radius of C is
⌈

n(q−1)
q

⌉
[11]. Using this, it can be seen easily that the covering radius of block of size n repetition code
[n(q − 1),1,n(q − 1)] generated by

GM = [

n︷ ︸︸ ︷
11 · · ·1

n︷ ︸︸ ︷
α2α2 · · ·α2

n︷ ︸︸ ︷
α3α3 · · ·α3 · · ·

n︷ ︸︸ ︷
αq−1αq−1 · · ·αq−1]

is
⌈

n(q−1)2

q

⌉
, since it will be equivalent to a repetition code of length (q − 1)n.

Consider the repetition dna code over N. There are two types of them of length n viz.

• cytosine repetition code Cβ : [n,1,2n] generated by GMβ = [

n︷ ︸︸ ︷
C C · · ·C]

• thymine repetition code Cα : (n,2,4n) generated by GMα = [

n︷ ︸︸ ︷
T T · · ·T].

Theorem 3.1. Let Cβ and Cα be the dna code of type β and α type in generator matrices GMβ and
GMα. Then, 4

⌊n
2

⌋
≤ r (Cα) ≤ 2n and r

(
Cβ

)
= 2n.
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Proof. Let x =

⌊ n
2 ⌋︷ ︸︸ ︷

T T · · ·T
⌈ n

2 ⌉︷ ︸︸ ︷
A A · · ·A and the code of C = {A A · · ·A, T T · · ·T} is generated by

[T T · · ·T] is an [n,1,2n] code. Then, d(x, AA · · ·A) =wt(x− AA · · ·A) = 4
⌈n

2

⌉
and d(x, TT · · ·T) =

wt(x − TT · · ·T) = 4
⌊n

2

⌋
. Therefore d (x,Cα) = min

{
4
⌈n

2

⌉
,4
⌊n

2

⌋}
. Thus, by definition of cov-

ering radius
r (Cα) ≥ 4

⌊n
2

⌋
(1)

Let x be any word in Nn. Let us take x has ω0 coordinates as 0’s, ω1 coordinates as
1’s, ω2 coordinates as 2’s, ω3 coordinates as 3’s, then ω0 + ω1 + ω2 + ω3 = n. Since Cα =

{AA · · ·A, TT · · ·T} and chinese euclidean weight of N : 0 is 0, C and G is 2 and T is 4. There-
fore, d(x,00 · · ·0) = n − ω0 + ω1 + 3ω2 + ω3 and d(x, TT · · ·T) = n − ω2 + ω1 + 3ω0 + ω3.

Thus d (x,Cα) = min{n − ω0 + ω1 + 3ω2 + ω3,n − ω2 + ω1 + 3ω0+ω3} and hence,

d (x,Cα) ≤ n + n = 2n. (2)

Hence, from the Equation (1) and (2), so 4
⌊n

2

⌋
≤ r (Cα) ≤ 2n.

Now, obtain the covering radius of Cβ covering with respect to the chinese euclidean
weight. Then d(x, AA · · ·A) = n − ω0 + ω1 + 3ω2 + ω3,d(x,CC · · ·C) = n − ω1 + ω0 + ω2 +

3ω3,d(x, TT · · ·T) = n − ω2 + 3ω1 + ω3 and d(x, GG · · ·G) = n − ω3 + 3ω1 + ω0 + ω2, for any
x ∈ Nn.

This implies d(x,Cβ) =min{n−ω0 +ω1 + 3ω2+ω3,n−ω1 +ω0 +ω2+3ω3,n−ω2 + 3ω1 +

ω3,n − ω3 + 3ω1 + ω0 + ω2} ≤ 2n and hence r(Cβ) ≤ 2n.

Let x =

t︷ ︸︸ ︷
AA · · ·A

t︷ ︸︸ ︷
CC · · ·C

t︷ ︸︸ ︷
TT · · ·T

n−3t︷ ︸︸ ︷
GG · · ·G, where t =

⌊n
4

⌋
,

then d(x, AA · · ·A) = 2n,d(x,CC · · ·C) = 4n − 8t,d(x, TT · · ·T) = 2n and d(x, GG · · ·G) = 8t.
Therefore r

(
Cβ

)
≥ min{2n,4n − 8t,8t} ≥ 2n.

Block repetition code

Let GM = [

n︷ ︸︸ ︷
C C · · ·C

n︷ ︸︸ ︷
T T · · ·T

n︷ ︸︸ ︷
G G · · ·G] be a generator matrix of N in each block of repe-

tition code length is n. Then, the parametrs of Block Repetition Code(BRC) is [3n,1,8n]. The
code of BRC = {c0 = A · · ·AA · · ·AA · · ·A, c1 =C · · ·CT · · ·TG · · ·G, c2 = T · · ·TA · · ·AT · · ·T, c3 =

G · · ·GT · · ·TC · · ·C}, dimension of BRC is 1 and chinese euclideran weight is 8n. Note that,
the block repetition code has constant chinese euclidean weight is 8n.

Theorem 3.2. To find 4
⌊n

2

⌋
+ 4n ≤ r

(
BRC3n

)
≤ 6n.

Proof. Let x = AA · · ·A∈N3n. Then, d(x, BRC3n) = 4
⌊n

2

⌋
+ 4n. Hence by definition, r

(
BRC3n

)
≥

4⌊n
2 ⌋+ 4n.
Let x = (u|v|w) ∈ N3n with u,v and w have compositions (r0,r1,r2,r3) ,

(s0, s1, s2 , s3) and (t0, t1, t2, t3) respectively such that
3
∑

i=0
ri = n,

3
∑

i=0
si = n and

3
∑

i=0
ti = n, then
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d(x, c0) = 3n − r0 + r1 + 3r2 + r3 − s0 + s1 + 3s2 + s3 − t0 + t1 + 3t2 + t3,d(x, c1) = 3n − r1 +

r0 + r2 + 3r3 − s2 + 3s0 + s1 + s0 − t3 + t0 + 3t1 + t2,d(x, c2) = 3n − r2 + r1 + 3r0 + r3 − s0 +

s1 + 3s2 + s3 − t2 + 3t0 + t1 + t3 and d(x, c3) = 3n − r3 + 3r1 + r0 + r2 − s2 + 3s0 + s1 + s3 −
t1 + 3t3 + t0 + t2.

Thus, d(x, BRC) = min{3n − r0 + r1 + 3r2 + r3 − s0 + s1 + 3s2 + s3−
t0 + t1 + 3t2 + t3,3n − r1 + r0 + r2 + 3r3 − s2 + 3s0 + s1 + s3 − t3 + t0 + 3t1 + t2,3n − r2 +

r1 + 3r0 + r3 − s0 + s1 + 3s2 + s3 − t2 + 3t0 + t1 + t3,3n − r3 + 3r1 + r0 + r2 − s2 + 3s0 + s1 +

s3 − t1 + 3t3 + t0 + t2} ≤ 6n and hence, r
(

BRC3n
)
≤ 6n.

Define a two block repetition dna code over N of each of length is n and the parameters

of two block repetition cod BRC2n : [2n,1,4n] is generated by G = [

n︷ ︸︸ ︷
CC · · ·C

n︷ ︸︸ ︷
TT · · ·T]. Use the

above and obtain a following

Theorem 3.3. 4
⌊n

2

⌋
+ 2n ≤ r

(
BRC2n) ≤ 4n.

Let GM = [

m︷ ︸︸ ︷
C C · · ·C

n︷ ︸︸ ︷
T T · · ·T] be the generalized generator matrix for two different block

repetition dna code of length are m and n respectively. In the parameters of two different
block repetition code(BRCm+n) are [m + n,1,min{4m,3m + 3n}] and Theorem 3.3 can be eas-
ily generalized for two different length using similar arguments to the following.

Theorem 3.4. 2m + 4
⌊n

2

⌋
≤ r (BRCm+n) ≤ 2m + 2n.

4 Simplex DNA code of type α and type β over N

In ref. [3] has been studied of Quaternary simplex codes of type α and type β. Type α Sim-
plex code Sα

k is a linear dna code over N with parameters
[
4k,k

]
and an inductive generator

matrix given by

GMα
k =

[
A · · ·A C · · ·C T · · ·T G · · ·G
GMα

k−1 GMα
k−1 GMα

k−1 GMα
k−1

]
(3)

with GMα
1 = [A(0) C(1) T(2) G(3)]. Type simplex code Sβ

k is a punctured version of Sα
k with

parameters [2k−1,
(
2k − 1

)
,k] and an inductive generator matrix given by

GMβ
2 =

[
C C C C A T
A C T G C C

]
(4)

GMβ
k =

[
CC · · ·C AA · · ·A TT · · ·T
GMα

k−1 GMβ
k−1 GMβ

k−1

]
(5)

and for k > 2, where GMα
k−1 is the generator matrix of Sα

k−1. For details the reader is refered
to [3]. Type α code with minimum chinese euclidean weight is 8.

Theorem 4.1. r
(
Sα

k
)
≤ 22k+1 − 3.
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Proof. Let x = CC · · ·C ∈ Nn. By equation(3) the result of Mattson for finite rings and using
Theorem 3.2, then

r (Sα
k ) ≤ r

(
Sα

k−1
)
+ r(<

22(k−1)︷ ︸︸ ︷
CC · · ·C

22(k−1)︷ ︸︸ ︷
TT · · ·T

22(k−1)︷ ︸︸ ︷
GG · · ·G >)

= r
(
Sα

k−1
)
+ 6.22(k−1)

= 6.22(k−1) + 6.22(k−2) + 6.22(k−3) + . . . . . . + 6.22.1 + r (Sα
1)

r (Sα
k ) ≤ 22k+1 − 3 (since r (Sα

1) = 5) .

Theorem 4.2. r
(

Sβ
k

)
≤ 2k (2k − 1

)
− 7

Proof. By equation(5), Proposition 3 and Theorem 3.4, thus

r
(

Sβ
k

)
≤ r

(
Sβ

k−1

)
+ r(<

4(k−1)︷ ︸︸ ︷
CC · · ·C

2(2k−3)−2(k−2)︷ ︸︸ ︷
TT · · ·T >)

= r
(

Sβ
k−1

)
+ 2(2k−2) + 2(2k−3) − 2(k−2)

≤2
(

2(2k−2) + 2(2k−4) + . . . + 24
)
+ 2

(
2(2k−3) + 2(2k−5) + . . . + 23

)
−

2
(

2(k−2) + 2(k−3) + . . . + 2
)
+ r
(

Sβ
2

)
rCE

(
Sβ

k

)
≤2k−1

(
2k − 1

)
− 7

(
since r

(
Sβ

2

)
= 5
)

.

5 MacDonald DNA codes of type α and β over N

The q-ary MacDonald code Mk,t(q) over the finite field Fq is a unique[
qk−qqqt

qqq−1 ,k,qqqk−1 − qqqt−1
]

code in which every non-zero codeword has weight either qk−1 or

qk−1 − qt−1 [10]. In [12], he studied the covering radius of MacDonald codes over a finite
field. In fact, he has given many exact values for smaller dimension. In [8], authors have
defined the MacDonald codes over a ring using the generator matrices of simplex codes. For
2 ≤ t ≤ k − 1, let GMα

k,t be the matrix obtained from GMα
k by deleting columns corresponding

to the columns of GMα
t . That is,

GMα
k,t =

[
GMα

k\
0

GMα
t

]
(6)

and let GMβ
k,t be the matrix obtained from GMβ

k by deleting columns corresponding to

the columns of GMβ
t . That is,

GMβ
k,t =

[
GMβ

k \
0

GMβ
t

]
(7)
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where [A\B] denotes the matrix obtained from the matrix A by deleting the columns
of the matrix B and 0 is a (k − t) × 22t ((k − t)× 2t−1 (2t − 1

))
. The code generated by the

matrix GMα
k,t is called code of type α and the code generated by the matrix GMβ

k,t is called
Macdonald code of type β. The type α code is denoted by Mα

k,t and the type β code is denoted

by Mβ
k,t. The Mα

k,t code is
[
4k − 4t,k

]
code over N and MMMβ

k,t is a
[(

2k−1 − 2t−1)(2k + 2t − 1
)

,k
]

code over N. In fact, these codes are punctured code of Sα
k and Sβ

k respectively.
Next Theorem gives a basic bound on the covering radius of above Macdonald codes.

Theorem 5.1. r
(

Mα
k,t

)
≤ 22k+1 − 22r+1 + r

(
Mα

r,t
)

for t < r ≤ k.

Proof. In equation(6), Proposition 3 and Theorem 3.2, thus

r
(

Mα
k,t
)
≤ r(<

22(k−1)︷ ︸︸ ︷
CC · · ·C

22(k−1)︷ ︸︸ ︷
TT · · ·T

22(k−1)︷ ︸︸ ︷
GG · · ·G >) + r

(
Mα

r,t
)

= 6.4k−1 + r
(

Mα
k−1,t

)
, for k ≥ r > t.

≤ 6.4k−1 + 6.4k−2 + · · ·+ 6.4r + r
(

Mα
r,t
)

for k ≥ r > t

r
(

Mα
k,t
)
≤ 22k+1 − 22r+1 + r

(
Mα

r,t
)

, fork ≥ r > t.

Theorem 5.2. r
(

Mβ
k,t

)
≤ 2k (2k − 1

)
+ 2r (1 − 2r) + r

(
Mβ

r,t

)
, for t < r ≤ k.

Proof. Using Proposition 3, Theorem 3.4 and in equation(7), obtain

r
(

Mβ
k,t

)
≤ r(<

22(k−1)︷ ︸︸ ︷
CC · · ·C

22(k−1)−1−2(k−1)−1︷ ︸︸ ︷
TT · · ·T >) + r

(
Mβ

k−1,t

)
≤ 2.22(k−1)+2.22(k−1)−1 − 2(k−1)−1 + r

(
Mβ

k−1,t

)
= 2.22(k−1)+2.22(k−1)−1 − 22(k−1)−1 + 2 · 22(k−2) + 2.22(k−2)−1 − 2.22(k−2)−1 + rCE

(
Mβ

k−2,t

)
≤ 2.22(k−1)+2.22(k−1)−1 − 22(k−1)−1 + 2.22(k−2) + 2.22(k−2)−1 − 2.22(k−2)−1 + . . .+

2.22r + 2.22r−1 + 2.2r−1 + r
(

Mβ
r,t

)
= 22k − 22r − 2k + 2r + r

(
Mβ

r,t

)
, t < r ≤ k.

r
(

Mβ
k,t

)
≤ 2k

(
2k − 1

)
+ 2r (1 − 2r) + r

(
Mβ

r,t

)
, t < r ≤ k.
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