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Academic Editor: Tomislav Došlić

Abstract. Let G = (V, E), V = {v1,v2, . . . ,vn}, be a simple graph of order n and size m. Denote
by ∆ = d1 ≥ d2 ≥ · · · ≥ dn = δ, di = d(vi), and ∆e = d(e1) ≥ d(e2) ≥ · · · ≥ d(em) = δe, sequences of
vertex and edge degrees, respectively. The first reformulated Zagreb index (coindex) is defined as

EM1(G) =
m

∑
i=1

d(ei)
2 = ∑

ei∼ej

(d(ei) + d(ej))
(

EM1(G) = ∑
ei≁ej

(d(ei) + d(ej))
)

. We consider relationship

between reformulated Zagreb indices/coindices and determine their bounds in terms of some basic
graph parameters.
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1 Introduction

Let G = (V, E), where V = {v1,v2, . . . ,vn} and E = {e1, e2, . . . , em} be a simple graph with
n vertices and m edges. Denote by ∆ = d1 ≥ d2 ≥ · · · ≥ dn = δ, di = d(vi), and ∆e = d(e1) ≥
d(e2)≥ · · · ≥ d(em) = δe, sequences of vertex and edge degrees, respectively. If vertices vi and
vj (edges ei and ej) are adjacent, we denote it as i ∼ j (ei ∼ ej), otherwise we write i ≁ j (i.e.
ei ≁ ej).

A line graph, L(G), of a graph G is the graph derived from G such that the edges in G are
replaced by vertices in L(G). Two vertices in L(G) are connected whenever the correspond-
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ing edges in G are adjacent. The number of vertices in L(G) is equal to the number of edges
in G, i.e. nL = m, and number of edges (see, for example, [10, 24]) is

mL =
1
2 ∑

i∼j
(di + dj − 2).

In graph theory, a graph invariant is property of the graph that is preserved by isomor-
phisms. The graph invariants that assume only numerical values are usually referred to as
topological indices in chemical graph theory. Topological indices are important tools used
to relate molecular structure with physicochemical characteristics of chemical compounds,
especially those relevant for their pharmacological, medical, toxicological, and similar prop-
erties.

The first Zagreb index, M1(G), is defined as the sum of the squares of the degrees of the
vertices [11]

M1(G) =
n

∑
i=1

d2
i ,

and the second Zagreb index as the sum of the product of the degrees of adjacent vertices [12]

M2(G) = ∑
i∼j

didj .

In [22] it was proven that the first Zagreb index satisfies the identity

M1(G) = ∑
i∼j

(di + dj). (1)

It can be easily verified that the number of edges in a graph L(G) holds in

mL =
1
2

M1(G)− m. (2)

More on the mathematical properties and chemical applications of the Zagreb indices can be
found in [1, 4, 5, 13, 14] and in the references cited therein.

The Zagreb indices can be reformulated in terms of the edges degree instead of the ver-
tices degree. The first and the second reformulated Zagreb indices, EM1(G) and EM2(G),
are defined as [18]:

EM1(G) =
m

∑
i=1

d(ei)
2 = ∑

ei∼ej

(d(ei) + d(ej)) and EM2(G) = ∑
ei∼ej

d(ei)d(ej).

The original and reformulated Zagreb indices are related as follows:

EM1(G) = M1(L(G)) and EM2(G) = M2(L(G)).

Therefore, one can compute the reformulated Zagreb indices of a graph G as the Zagreb
indices of the corresponding line graph L(G). More on these indices can be found in [8, 15,
19, 25].
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The concept of coindices was introduced in [9] (see also [2]). In this case the sum runs over
the edges of the complement of G. In a view of (1), the corresponding first Zagreb coindex of
G is defined as

M1(G) = ∑
i≁j

(di + dj) ,

and the second Zagreb coindex as

M2(G) = ∑
i≁j

didj .

Analogously, reformulated first and second Zagreb coindices, EM1(G) and EM2(G), are de-
fined as

EM1(G) = ∑
ei≁ej

(d(ei) + d(ej)) =
m

∑
i=1

(m − 1 − d(ei))d(ei) , (3)

and
EM2(G) = ∑

ei≁ej

d(ei)d(ej) . (4)

In the present paper we consider linear combinations between reformulated Zagreb in-
dices/coindices and determine their bounds in terms of some basic graph parameters.

2 Preliminaries

In this section we recall some results reported in the literature for EM1(G) and EM2(G)

that are of interest for our work.
In [15] the following relations between reformulated Zagreb indices and the first Zagreb

index was proven.

Lemma 2.1. [15] Let G be a simple graph with n vertices and m edges. Then

EM1(G)− EM2(G) ≤ 1
2

M1(G)− m, (5)

with equality if and only if G is a union of isolated vertices and paths P2 and P3.

Lemma 2.2. [15] Let G be a simple graph with n vertices and m edges. Then

EM2(G) ≥ (M1(G)− 2m)3

2m2 , (6)

with equality if and only if L(G) is regular.

Let us note that the inequality (6) was independently proven in [8], but with wrong equal-
ity conditions. Also, in the same paper the following result was established.
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Lemma 2.3. [8] Let G be a simple graph with n vertices and m edges. Then

EM1(G) ≥ (M1(G)− 2m)2

m
, (7)

with equality if and only if G is regular.

Let us note that the equality condition in (7) is not correct. Namely, one can easily see that
equality (7) holds if and only if L(G) is regular graph. The inequality (7) was also proven
later in [23].

For the number of edges of a line graph L(G), we have the following result.

Lemma 2.4. Let G be a simple graph with m edges. Then

1
2

mδe ≤ mL ≤ 1
2

m∆e, (8)

with equality if and only if L(G) is regular.

Proof. For any edge ei, i = 1,2, . . . ,m, in a graph G we have

δe ≤ d(ei) ≤ ∆e, (9)

i.e. for any two adjacent vertices vi and vj in G

δe ≤ di + dj − 2 ≤ ∆e.

After summing up the above inequality over all adjacent vertices vi and vj in G, we get

δe ∑
i∼j

1 ≤ ∑
i∼j

(di + dj)− 2∑
i∼j

1 ≤ ∆e ∑
i∼j

1,

that is
mδe ≤ M1(G)− 2m ≤ m∆e.

From the above and (2) we arrive at (8).
Equality (9) holds if and only if d(ei) = ∆e = δe for every i = 1,2, . . . ,m. Therefore, equality

(8) holds if and only if L(G) is regular.

3 Main results

In the next theorem we determine a relationship between the first and second reformu-
lated Zagreb indices.

Theorem 3.1. Let G be a simple graph with m ≥ 2 edges. Then

δeEM1(G)− EM2(G) ≤ δ2
e mL , (10)

and
∆eEM1(G)− EM2(G) ≤ ∆2

e mL . (11)

Equality (10) holds if and only if for every pair of adjacent edges ei and ej in G, holds that at least one
is of degree δe, whereas in (11) if and only if at least one in the pair is of degree ∆e.
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Proof. For every i and j, 1 ≤ i, j ≤ m,

(d(ei)− δe)(d(ej)− δe) ≥ 0 and (∆e − d(ei))(∆e − d(ej)) ≥ 0,

that is

d(ei)d(ej) + δ2
e ≥ δe(d(ei) + d(ej)) ,

d(ei)d(ej) + ∆2
e ≥ ∆e(d(ei) + d(ej)) .

(12)

After summation of the above inequalities over all pairs of adjacent edges ei and ej in G, we
obtain

∑
ei∼ej

d(ei)d(ej) + δ2
e ∑

ei∼ej

1 ≥ δe ∑
ei∼ej

(d(ei) + d(ej)) ,

and

∑
ei∼ej

d(ei)d(ej) + ∆2
e ∑

ei∼ej

1 ≥ ∆e ∑
ei∼ej

(d(ei) + d(ej)) ,

that is

EM2(G) + δ2
e mL ≥ δeEM1(G) and

EM2(G) + ∆2
e mL ≥ ∆eEM1(G) ,

(13)

from which we obtain the inequalities (10) and (11). inequality (10) holds if and only
if every pair of adjacent edges ei and ej in G, has at least one edge of degree δe. Similarly,
inequality (11) holds if and only if every pair of adjacent edges ei and ej in G, has at least one
edge of degree ∆e.

Remark 1. The inequalities (10) and (11) are incomparable. Thus, for example, for a graph
with vertex degree sequence (d1,d2, . . . ,dn) =

(n
2 , n

2 ,1, . . . ,1
)
, for even n, the inequality (10) is

stronger than (11). On the other hand, for the graph with vertex degree sequence (d1,d2, . . . ,dn) =

(n − 1,2, . . . ,2), where n is odd, the inequality (11) is stronger than (10).

Corollary 3.2. Let G be a connected graph with m ≥ 2 edges. Then we have

δeEM1(G)− EM2(G) ≤ m∆eδ
2
e

2
,

and

∆eEM1(G)− EM2(G) ≤ m∆3
e

2
.

Equalities hold if and only if L(G) is a regular graph.

Proof. Since
mδe ≤ 2mL ≤ m∆e , (14)

from the right hand part of inequality (14) and inequalities (10) and (11) we obtain the re-
quired result.
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Remark 2. Since
d(ei) ≥ δe ≥ 1,

from the first inequality (12) we have

d(ei)d(ej) + 1 ≥ d(ei) + d(ej) .

After summation of the above inequality over all pairs of adjacent edges ei and ej in G, we
obtain the inequality (5). Therefore inequality (10) is stronger than (5).

In the next theorem we determine a relationship between EM1 and EM1(G).

Theorem 3.3. Let G be a connected graph with m ≥ 2 edges. Then we have

m(m − 1)δe ≤ EM1(G) + EM1(G) ≤ m(m − 1)∆e . (15)

Equality holds if and only if L(G) is regular.

Proof. Since

EM1(G) = ∑
ei≁ej

(d(ei) + d(ej)) =
m

∑
i=1

(m − 1 − d(ei))d(ei) =

= (m − 1)
m

∑
i=1

d(ei)−
m

∑
i=1

d(ei)
2 = 2mL(m − 1)− EM1(G) ,

we have that the following identity is valid

EM1(G) + EM1(G) = 2mL(m − 1) . (16)

From the above and equality (14) we arrive at wquality (15).
Equality in (15), and consequently in (14), holds if and only if L(G) is regular.

Theorem 3.4. Let G be a connected graph with m ≥ 2 edges. Then we have

(17) Equality on the left hand side holds if and only if G is regular or d2 = · · ·= dn−1 =
∆+δ

2 .
Equality on the right hand side holds if and only if di ∈ {∆,δ}, for all i, 1 ≤ i ≤ n.

Proof. The equality (16) can be considered as

EM1(G) + EM1(G) = (m − 1)(M1(G)− 2m) . (18)

In [20] (see also [5, 17]) it was proven that

M1(G) ≥ 4m2

n
+

1
2
(∆ − δ)2 ,

with equality holding if and only if G is either regular or d2 = · · · = dn−1 =
∆+δ

2 . From the
above and identity (18) we obtain the left hand side of inequality (3.4).

In [6] it was proven that
M1(G) ≤ 2m(∆ + δ)− n∆δ ,

with equality holding if and only if di ∈ {∆,δ}, for all i, 1 ≤ i ≤ n. So the proof is com-
pleted.
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Since (∆ − δ)2 ≥ 0, we obtain the following result.

Corollary 3.5. Let G be a connected graph with n ≥ 3 vertices and m edges. Then we have

EM1(G) + EM1(G) ≥ 2m(m − 1)(2m − n)
n

.

Equality holds if and only if G is regular.

In the next theorem we establish relationship between EM1(G) and the first Zagreb index,
M1(G).

Theorem 3.6. Let G be a connected graph with m ≥ 2 edges. Then we have

EM1(G) ≥ (m − 1 − ∆e − δe)(M1(G)− 2m) + m∆eδe . (19)

Equality holds if d(ei) ∈ {∆e,δe}, for all i, 1 ≤ i ≤ m.

Proof. For every i, i = 1,2, . . . ,m, the following inequality is valid

(d(ei)− δe)(∆e − d(ei)) ≥ 0, (20)

that is
d(ei)

2 + ∆eδe ≤ (∆e + δe)d(ei) .

After summation of the above inequality over i, i = 1,2, . . . ,m, we obtain
m

∑
i=1

d(ei)
2 + ∆eδe

m

∑
i=1

1 ≤ (∆e + δe)
m

∑
i=1

d(ei) ,

that is
EM1(G) ≤ (∆e + δe)(M1(G)− 2m)− m∆eδe .

From the above inequality and identity (18) we arrive at (19).
Equality in (20), and therefore in (19), holds if and only if d(ei) ∈ {∆e,δe}, for all i, i =

1,2, . . . ,m.

Denote by mL the number of nonadjacent edges in L(G). Then the following identity is
valid

mL =
m(m − 1)

2
− mL =

1
2
(m(m + 1)− M1(G)) .

The proof of the next theorem is analogous to that of Theorem 3.1, hence omitted. The
following theorem reveals a relationship between reformulated Zagreb coindices.

Theorem 3.7. Let G be a connected graph with m ≥ 2 edges. Then we have

δeEM1(G)− EM2(G) ≤ δ2
e mL .

and
∆eEM1(G)− EM2(G) ≤ ∆2

e mL ,

Equality in the first inequality holds if and only if for every pair of nonadjacent edges ei and ej in G,
holds that at least one is of degree δe, whereas in the second one if and only if at least one edge in each
pair of nonadjacent edges is of degree ∆e.
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In the next theorem we determine a relationship between the first and second reformu-
lated Zagreb indices.

Theorem 3.8. Let G be a connected graph with m ≥ 2 edges. Then we have

(∆e + δe)EM1(G)− 2EM2(G) ≥ 2∆eδemL . (21)

Equality holds if and only if L(G) is regular.

Proof. For every i and j, 1 ≤ i, j ≤ m, the following inequality is valid

(d(ei)− δe)(∆e − d(ej)) ≥ 0,

that is
d(ei)d(ej) ≤ ∆ed(ei) + δed(ej)− δe∆e . (22)

Also, for every i and j, 1 ≤ i, j ≤ m

(∆e − d(ei))(d(ej)− δe) ≥ 0,

that is
d(ei)d(ej) ≤ δed(ei) + ∆ed(ej)− ∆eδe . (23)

The sum of (22) and (23) yields

2d(ei)d(ej) ≤ (∆e + δe)(d(ei) + d(ej))− 2∆eδe .

After summation of the above inequality over all pairs of adjacent edges ei and ej in G, we
obtain

2 ∑
ei∼ej

d(ei)d(ej) ≤ (∆e + δe) ∑
ei∼ej

(d(ei) + d(ej))− ∆eδe ∑
ei∼ej

2,

that is
2EM2(G) ≤ (∆e + δe)EM1(G)− 2∆eδemL.

In both (22) and (23) equality holds if and only if ∆e = d(ei) = d(ej) = δe, which implies
that equality (21) holds if and only if L(G) is regular.

Corollary 3.9. Let G be a connected graph with m ≥ 2 edges. Then we have

EM2(G) ≤ ∆e(EM1(G)− δemL) .

Equality holds if and only if L(G) is regular.

Proof. Since δe ≤ ∆e, from (22) we have

d(ei)d(ej) ≤ ∆e(d(ei) + d(ej)− δe) .

After summation of the above inequality over all pairs of adjacent edges ei and ej in G, we
obtain the required result.
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Corollary 3.10. Let G be a connected graph with m ≥ 2 edges. Then we have

EM2(G) ≤ (∆e + δe)2EM1(G)2

8∆eδe(M1(G)− 2m)
. (24)

Equality holds if and only if L(G) is regular.

Proof. According to inequality (21) we have that

(∆e + δe)EM1(G) ≥ 2EM2(G) + 2∆eδemL = 2EM2(G) + δe∆e(M1(G)− 2m) .

By the arithmetic–geometric mean inequality (see e.g. [21]) we have

(∆e + δe)EM1(G) ≥ 2
√

2∆eδeEM2(G)(M1(G)− 2m) ,

from which we arrive at (24).

Similarly as in the case of Theorem 3.8 the following result can be proven.

Theorem 3.11. Let G be a connected graph with m ≥ 2 edges. Then we have

(∆e + δe)EM1(G)− 2EM2(G) ≥ 2∆eδemL .

Equality holds if and only if L(G) is either a regular graph or L(G) ∼= P3.

References
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