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Abstract. The symmetric division degree (SDD) index is one the 148 discrete Adriatic indices,
introduced by Vukicević et al. as a remarkable predictor of total surface area of polychlorobiphenyls.
The SDD index has already been proved a valuable index in the QSPR/QSAR studies. This paper is
essentially a survey of known results about bounds for SDD index of graphs.
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1 Introduction

Let G = (V, E) be a simple connected graph with n ≥ 2 vertices and m = |E| edges. The
maximum vertex degree is denoted by ∆ and the minimum by δ. For the edge e = vivj, the
degree of edge e is d(e) = di + dj − 2, ∆e = maxm

k=1 d(ek) + 2 and δe = minm
k=1 d(ek) + 2. A

graph is d-regular if all its vertices have degree d. The distance between two vertices u and
v, denoted by d(u,v), is defined to be the length of a shortest path joining u and v in G. The
diameter of G, denoted by d(G), is the maximum distance over all pairs of vertices in G. A
graph G is said to be respectively a tree, a unicyclic graph, and a bicyclic graph if and only if
m = n − 1, n, and n + 1. Let Pn and Sn be the n-vertex path and the n-vertex star, respectively.
By S+

n we mean a unicycle graph constructed from the star graph Sn with an additional edge.
A chemical (molecular) graph is a graph with maximum degree no more than four.
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Molecular descriptors, which are numerical functions of molecular structure, play an im-
portant role in mathematical chemistry. They are used in QSAR and QSPR studies to study
and predict biological or chemical properties of molecules [5]. Topological indices, which are
numerical functions of the underlying molecular graph, are an important group of these de-
scriptors. The topological index that depends on the degrees of the vertices of the graph G, is
known as the vertex-degree-based (VDB) index. Similarly, an edge-degree-based (EDB) index
is introduced. The symmetric division degree index of graph G, SDD(G), was introduced
by Vukičević and Gašperov in [39], is a VDB index and one of the 148 so-called Adriatic in-
dices, with a good predictive power for the total surface area of polychlorobiphenyl [39]. It
is defined as

SDD = SDD(G) = ∑
i∼j

d2
i + d2

j

djdi
,

where di is a degree of vertex vi.
Symmetric division degree index as an applicable and usable topological index whose

quality is higher than some of the popular VDB indices, especially the geometric-arithmetic
index [11]. In recent years and due to the importance of the SDD, many studies have been
conducted on this index. In some works, the use of index in predicting the properties of
chemical structures has been investigated [11, 13, 25, 28, 34], and some others, have found
extremal graphs i.e graphs with minimum and maximum SDD index of different categories
of graphs [2, 15, 20, 23, 24, 30, 36, 38, 40]. This text provides a review of previous researches
and main results on bounds on the SDD index. Before proceeding, we recall the concepts of
some well-known topological indices.

Two VDB topological indices, the first and the second Zagreb indices, M1 and M2, were
defined in [17, 19] as

M1 = M1(G) =
n

∑
i=1

d2
i and M2 = M2(G) = ∑

i∼j
didj.

Since M1 = ∑m
i=1(d(ei) + 2), this index can also be considered as an EDB topological index

[26].
The Hyper-Zagreb index, HM, was defined in [35] as

HM = HM(G) = ∑
i∼j

(di + dj)
2.

The first and the second multiplicative Zagreb indices, Π1 and P2, were defined in [16] as

Π1 = Π1(G) =
n

∏
i=1

d2
i and Π2 = Π2(G) = ∏

i∼j
didj.

Also, the multiplicative sum Zagreb index, Π∗
1 , was introduced in [7] as

Π∗
1 = Π∗

1(G) = ∏
i∼j

(di + dj).
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A so-called inverse sum indeg index, ISI, was defined in [38] as a significant predictor of
total surface area of octane isomers. The inverse sum indeg index is defined as

ISI = ISI(G) = ∑
i∼j

didj

di + dj
.

The geometric-arithmetic index, GA, and arithmetic-geometric index AG, were intro-
duced in [30,24], are defined as

GA = GA(G) = ∑
i∼j

2
√

didj

di + dj
,

AG = AG(G) = ∑
i∼j

di + dj

2
√

didj

.

The general Randić index, Rα, was defined in [33] as

Rα = Rα(G) = ∑
i∼j

(didj)
α.

Another VDB index that was mentioned and introduced in [1, 18], is the sigma index, σ.
It is defined as

σ = σ(G) = ∑
i∼j

(di − dj)
2.

The so-called forgotten index was introduced in [12], is defined as

F = F(G) =
n

∑
i=1

d3
i = ∑

i∼j
d2

i + d2
j .

Ernesto Estrada et al. [9] proposed a new topological index, named atom-bond connec-
tivity (ABC) index. It displays an excellent correlation with the heat of formation of alka-
nes [8, 9]. This index is defined as follows

ABC = ABC(G) = ∑
i∼j

√
di + dj − 2

didj
.

The inverse degree index ID was introduced in [10] as

ID = ID(G) =
n

∑
i=1

1
di

.

Klein and Randić [21] defined the Kirchhoff index of graph G, K f , as

K f = K f (G) = ∑
i<j

rij,
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where rij is the resistance distance between the vertices i and j of a simple connected graph
G.

The inverse symmetric division deg (ISDD) index, was proposed by Ghorbani et al. [14]
which is given by the formula

ISDD = ISDD(G) = ∑
i∼j

didj

d2
j + d2

i
.

In this text, we have listed together almost all the obtained bounds for SDD. In the
first two sections, we have presented the general lower and upper bounds, respectively. In
the third section, we have given the bounds for special graphs such as trees and molecular
graphs. And in Section 4, we have compared the existing bounds and introduced the best
upper and lower bounds.

2 Lower bounds for SDD

In this section, we present the lower bounds for the SDD index in terms of some other
topological indices and graph parameters.

In [4], Das et al. gave the following six theorems, contain lower bounds for the SDD index
of graphs in the term of M1(G), M2(G), ISI(G), GA(G) and R−1(G).

Theorem 2.1. [4] Let G be a connected graph of order n with m ≥ 1 edges. Then

SDD ≥
M2

1
M2

− 2m

with equality holding if and only if G is a regular graph or a semi-regular bipartite graph.

The following bounds are also given in [4], which are the result of Theorem 2.1, although
they are weaker than it.

SDD ≥ mδeM1

M2
− 2m ≥ m2δ2

e
M2

− 2m,

SDD ≥ 2m2M1

M2H
− 2m ≥ 4m4

M2H2 − 2m,

SDD ≥
M2

1
∆e ISI

− 2m.

Theorem 2.2. [4] Let G be a connected graph of order n with m ≥ 2 edges. Then

SDD ≥ m2∆eδe

(∆e + δe)ISI − M2
− 2m

with equality holding if and only if di
dj
+

dj
di
= dk

dl
+ dl

dk
for any edges vivj,vkvl ∈ E(G) and di + dj = ∆e

or δe, for any edge vivj ∈ E(G).
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Theorem 2.3. [4] Let G be a connected graph with m ≥ 2 edges. Then

SDD ≥ m2δe

ISI
− 2m.

Equality holds if and only if G is a regular graph or a semi-regular bipartite graph.

Theorem 2.4. [4] Let G be a connected graph of order n with m ≥ 1 edges. Then

SDD ≥ 4m3

GA2 − 2m (1)

with equality holding if and only if di
dj
+

dj
di
= dk

dl
+ dl

dk
for any edges vivj,vkvl ∈ E(G).

Theorem 2.5. [4] Let G be a connected graph of order n with m ≥ 2 edges. Then

SDD ≥ 4m4

(m − 1)GA2 −
m (Π∗

1)
2
m

(m − 1)(Π2)
1
m
− 2m (2)

with equality holding if and only if di
dj
+

dj
di
= dk

dl
+ dl

dk
for any edges vivj,vkvl ∈ E(G).

Theorem 2.6. [4] Let G be a connected graph of order n with m ≥ 2 edges. Then

SDD ≥ m
m − 1

(
2(m + 1)− (Π∗

1)
2
m

(Π2)
1
m

)
.

Equality holds if and only if G is a regular graph.

Theorem 2.7. [4] Let G be a connected graph of order n with m ≥ 1 edges. Then

SDD ≥ n2

R−1
− 2m. (3)

Equality holds if and only if G is a regular graph or a bipartite semi-regular graph.

Furtula et al. in [11], obtained the following five lower bounds in terms of indices M1, σ,
GA and ABC.

Theorem 2.8. [11] Let G be a graph of order n with m edges and maximum degree ∆. Then

SDD ≥ m

[(
M1

m∆

)2

− 2

]
,

with equality holding if and only if G is a regular graph.

Theorem 2.9. [11] Let G be a graph of order n with m edges and maximum degree ∆. Then

SDD ≥ σ

∆2 + 2m,

with equality holding if and only if G is a regular graph.
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Theorem 2.10. [11] Let G be a connected graph of order n. Then

SDD ≥ 2GA,

the equality holds if and only if G is a regular graph.

Theorem 2.11. [11] Let G be a graph of order n with m edges. Then

SDD ≥ 2m2

GA

with equality holding if and only if each connected component of G is a regular graph.

Theorem 2.12. [11] Let G be a connected graph of order n > 2. Then

SDD ≥ 3
2

ABC.

A new lower bounds for SDD has been found by Ghorbani et al. in [14].

Theorem 2.13. [14] Let G be a graph of order n with m edges. Then

SDD ≥ 4AG2

m
− 2m. (4)

Theorem 2.14. [14] Let G be a graph of order n with m edges. Then

SDD ≥ m2

ISDD
. (5)

In addition, if either G is regular or edge-transitive, the equality holds.

Theorem 2.15. [14] Let G be a graph with m edges. Then

SDD ≥ ISDD +
3m
2

,

with equality if and only if G is regular.

Theorem 2.16. [15] Let G be a simple connected graph with order n, size m, p pendent vertices,
maximum degree ∆ and minimum non-pendent vertex degree δ1. Then

SDD(G) ≥ p

(
δ2

1 + 1
δ1

)
+ 2(m − p).

For the regular and star graph equality hold.

Theorem 2.17. [15] Let G be a simple connected graph with order n, size m, maximum degree ∆ and
minimum degree δ. Then

SDD(G) ≥

√
n2HM

m
− 4m2

(
∆
δ
− δ

∆

)2

− 2m.
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Recently, Liu and Huang [22] have shown that the only graph with 0 < SDD(G) ≤ 4
is K2 with SDD(K2) = 2. If 4 < SDD(G) ≤ 6, then G ∈ {S3,C3} with SDD(S3) = 5 and
SDD(C3) = 6, and if 6< SDD(G)≤ 8, then G is P4 or C4 with SDD(P4) = 7 and SDD(C4) = 8.
Also, they have obtained the new bounds for the SDD in the terms of VDB indices the inverse
degree index, ID, the first Zagreb index, M1, the second Zagreb index, M2 and the forgotten
index F.

Theorem 2.18. [22] Let G be a graph of order n with minimum degree δ. Then

SDD ≥ δ2 ID,

with equality if and only if G is regular.

Theorem 2.19. [22] Let G be a graph of order n with m edges. Then

SDD ≥ 2m2

M2
and SDD ≥ 4m2

F
,

with both equalities if and only if G is regular.

Theorem 2.20. [22] Let G be a graph of order n with m edges, maximum degree ∆ and minimum
degree δ. Then for α > 0

SDD ≥ 2δ2m
α+1

α

(Mα
2)

1
α

and SDD ≥ δ2(2m)
α+1

α

∆(Mα
1)

1
α

.

with both equalities if and only if G is regular.

The following three bounds has been found by Vasilyev in [37].

Theorem 2.21. [37] Let G be a simple connected graph with m edges. Then

SDD ≥ 2m,

with equality if and only if G is regular.

Theorem 2.22. [37] Let G be a simple connected graph with n ≥ 3 vertices. Then

SDD ≥ 2n − 1.

The equality holds if and only if G is isomorphic to path Pn with n vertices.

Theorem 2.23. [37] Let G be a graph with n vertices and minimum vertex degree δ. Then

SDD ≥ nδ,

the equality holds if and only if G is δ-regular graph.
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3 Upper bounds for SDD

The most important upper bounds obtained for the SDD of graphs, in terms of other
indices and graph parameters, are listed in this section. Obviously, the bounds that are only
in terms of ∆ and δ or even the n and m, are not suitable bounds.

Theorem 3.1. [4] Let G be a connected graph with m ≥ 2 edges. Then

SDD ≤ m

(√
∆
δ
+

√
δ

∆

)2

− 2m.

Theorem 3.2. [4] Let G be a connected graph of order n with m ≥ 2 edges. Then

SDD ≤ 4AG2 −
m(m − 1) (Π∗

1)
2
m

(Π2)
1
m

− 2m, (6)

with equality holding if and only if di
dj
+

dj
di
= dk

dl
+ dl

dk
for any edges vivj,vkvl ∈ E(G).

Theorem 3.3. [4] Let G be a connected graph with n ≥ 2 vertices and m edges. Then

SDD ≤ n(∆e + δe)− ∆eδeR−1 − 2m, (7)

SDD ≤ n2(∆e + δe)2

4∆eδeR−1
− 2m.

Equalities hold if and only if G is a regular graph or a semi-regular bipartite graph, or di + dj = ∆e or
δe for any edge vivj ∈ E(G) (∆e ̸= δe).

Theorem 3.4. [4] Let G be a connected graph with n ≥ 2 vertices and m edges. Then

SDD ≤ n(∆e + δe)−
m2δe∆e

M2
− 2m,

SDD ≤ n2M2(∆e + δe)2

4m2∆eδe
− 2m,

SDD ≤ n2

R−1
+

(∆e − δe)2R−1

4
− 2m.

Equalities hold if and only if G is a regular graph or a semi-regular bipartite graph.

Theorem 3.5. [11] Let G be a graph of order n, with m ≥ 1 edges. Then

SDD(G) ≤ M1(G),

with equality holding if and only if G ∼= pK2 ∪ (n − 2p)K1, (p > 1).
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Theorem 3.6. [11] Let G be a graph of order n, with m ≥ 1 edges. Then

SDD(G) ≤ F(G),

with equality holding if and only if G ∼= rK2 ∪ (n − 2r)K1, (r ≥ 1). Moreover, if G is connected and
n > 3, then SDD(G) < F(G).

Theorem 3.7. [11] Let G be a graph of order n with m edges and maximum degree δ. Then

SDD ≤ σ

δ2 + 2m,

with equality holding if and only if G is a regular graph.

Theorem 3.8. [14] Let G be a graph on n vertices and m edges, with maximum degree ∆ and
minimum degree δ. Then

SDD ≤ (
√

2 + H)2AG2
√

2mH
− 2m, (8)

where H =
√

∆
δ +

√
δ
∆ .

Theorem 3.9. [15] Let G be a simple connected graph with order n, size m, p pendent vertices,
maximum degree ∆ and minimum non-pendent vertex degree δ1. Then

SDD(G) ≤ p
(

∆2 + 1
∆

)
+ (m − p)

(
∆2 + δ2

1
∆δ1

)
.

Equality holds only if graph is regular and star.

Theorem 3.10. [15] Let G be a simple connected graph with order n, size m, p pendent vertices,
maximum degree ∆ and minimum non-pendent vertex degree δ1. Then

SDD(G) ≤ p
(

∆2 + 1
∆

)
+

1
δ2

1
[HM − p(1 + δ1)

2]− 2(m − p).

Equality holds only if graph is regular and star.

Theorem 3.11. [15] Let G be a simple connected graph with order n, size m, maximum degree ∆ and
minimum degree δ. Then

SDD(G) ≤ HM
δ2 − 2m.

Theorem 3.12. [22] Let G be a graph of order n with m edges. Then

SDD ≤ m
(

n − 1 +
1

n − 1

)
,

with equality if and only if G ∼= Sn.
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Theorem 3.13. [22] Let G be a graph of order n with maximum degree ∆. Then

SDD ≤ ∆2 ID,

with equality if and only if G is regular.

Theorem 3.14. [29] Let G be a graph of order n with m edges

SDD ≤ 2m(1 + I(G))− n2.

The equality holds if and only if di = dj for every pair of non-adjacent vertices i and j of G, in particular
by d-regular graphs, complete multipartite Kp1,p2,...,pr graphs and (n − 1,d)-regular graphs, for 1 ≤
d < n − 1.

Theorem 3.15. [29] Let G be a graph with n vertices, m edges, maximum degree ∆ and minimum
degree δ. Then

SDD ≤ 2m
[

1 +
(

1
δ
− 1

∆

)(
n − 1 − 2m

n

)]
.

The equality is attained by all regular graphs.

Theorem 3.16. [29] Let G be a graph with n vertices and m edges. Then

SDD ≤ 2m
(

K f (G) + n
n − 1

)
− n2,

where the equality is attained by Kn and by the complete bipartite graphs Kr,n−r, for 1 ≤ r ≤ ⌈n
2 ⌉.

Theorem 3.17. [37] Let G be a graph with n vertices and minimum vertex degree ∆. Then

SDD ≤ n∆,

the equality holds if and only if G is ∆-regular graph.

4 Bounds for special graphs

In this section, we have gathered the bounds obtained for the SDD of special graphs such
as trees, unicyclic graphs, bicyclic graphs, as well as some other bounds for the SDD, ob-
tained by restricting conditions. An important part of these graphs are molecular graphs
whose maximum degree of vertices does not exceed 4. Du et al. [6], have presented some
upper bounds for the SDD of trees with specific parameters such as matching number, dom-
ination number, independence number, number of pendant vertices, segments, diameter and
radius are presented. Also, in [27], Mohanappriya et al. have obtained a general expression
for the SDD index of transformation networks of a network.

In [3], Ali et al. give the following bounds for the molecular graphs in the term of n and
m.
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Theorem 4.1. [3] Let G be a molecular graph of order n with m edges, where n − 1 ≤ m ≤ 2n and
n ≥ 5. Then

SDD ≥ n + m,

with equality if and only if G is isomorphic to either the path graph Pn or the cycle graph Cn.

Theorem 4.2. [3] Let G be a molecular graph of order n, with m edges, where n − 1 ≤ m ≤ 2n and
n ≥ 5.
(1) If m + n ≡ 0 (mod 3) then

SDD(G) ≤ 3n +
m
2

,

with equality if and only if G contains no vertices of degrees 2 and 3.
(2) If m + n ≡ 1 or 2 (mod 3) then

SDD(G) ≤ 3n +
m
2
− 1

2
.

The equality holds if and only if either G contains no vertex of degree 2 and contains exactly one
vertex of degree 3, which is adjacent to three vertices of degree 4, or G contains no vertex of degree 3
and contains exactly one vertex of degree 2, which is adjacent to two vertices of degree 4.

In the next five theorems, bounds for trees, unicyclic graphs and bicyclic graphs are ob-
tained.

Theorem 4.3. [14] Let T be a tree with n vertices and maximum degree ∆. Suppose T has p pendent
edges. Then

SDD ≤ (n − 1)∆2 + p
2

.

Theorem 4.4. [29] Let T be a Tree with n vertices and diameter d. Then

SDD ≤ 2(n − 1)
(

1 +
3n
2

− d
)
− n2,

where the equality is attained by the path graph, P3.

Theorem 4.5. [29] Let G be a graph with n vertices. Then
(1) if G is a tree

SDD(G) ≤ n2 − 2n + 2,

(2) if G is a unicyclic graph

SDD(G) ≤ n2 − 2n + 2 +
2

n − 1
,

(3) if G is a bicyclic graph

SDD ≤ n2 − 4
3
(n + 1) +

4
n − 1

.
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Theorem 4.6. [37] Let T be a tree with n ≥ 2 vertices. Then

SDD ≤ (n − 1)2 + 1.

The equality holds if and only if T is isomorphic to star graph, Sn.

Theorem 4.7. [37] Let G be a unicyclic connected graph with n ≥ 3 vertices. Then

SDD ≤ n + 1
n − 1

+ (n − 1)(n − 2) + 2.

The equality holds if and only if G isomorphic to the graph S+
n .

Recall that a pendent edge is an edge incident with a vertex of degree one, whereas a path
u1u2 . . . us is said to be a pendent path at u1 if du1 ≥ 3, dui = 2 for i = 2,3, ..., s − 1, and dus = 1.
A lower bound for the graphs with k pendent paths has been found by Pan et al. in [30].

Theorem 4.8. [30] If G is a graph with k pendant paths and m edges then it holds that

SDD ≥ 2m +
2k
3

.

For positive integer n ≥ 2, suppose T(n), U(n) and B(n) are the set of trees, unicyclic
graphs and bicyclic graphs on 2n vertices with a perfect matching, respectively. In [31]
and [32], Rajpoot et al. have shown that (except a few special classes of graphs)
[1] for T ∈ T(n), SDD(T) ≥ 4n + 1,
[2] for G ∈ U(n), SDD(G) ≥ 4n + 2,
[3] for G ∈ B(n), SDD(G) ≥ 4(n + 1).

They also provided the following upper bounds.

Theorem 4.9. [31] Let T ∈ T(n), n ≥ 4 vertices. Then

SDD(T) ≤
{ 1

8(45n − 26), n is even,
1
8(45n − 27), n is odd.

Theorem 4.10. [31] Let G ∈ U(n), n ≥ 4 vertices. Then

SDD(G) ≤
{ 1

8(45n), n is even,
1
8(45n − 1), n is odd.

Theorem 4.11. [32] Let G ∈ B(n), n ≥ 6 vertices and G has a maximum degree at most four. Then

SDD(G) ≤
{ 1

8(45n + 26), n is even,
1
8(45n + 25), n is odd.
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Bound COR MAE
Inequality 1 0.996 0.35
Inequality 2 0.995 0.36
Inequality 3 0.986 1.26
Inequality 4 0.999 0.12
Inequality 5 0.986 0.71

Table 1. The best lower bound for SDD.

Bound COR MAE
Inequality 6 0.977 0.35
Inequality 7 0.975 0.36
Inequality 8 0.984 1.26

Table 2. The best upper bound for SDD.

5 Conclusions

The aim of this paper was to collect the obtained bounds for SDD index and compare
these bounds. For this purpose, we compared the values of the general bounds (the bounds
in sections 2 and 3), for graphs up to 7 vertices (nearly 1000 graphs) with the actual value
of SDD and the results are given in the following tables. Table 1. contains the best lower
bounds and Table 2. contains the best upper bounds. In these tables, COR is the correlation
between SDD and bound and MAE or mean absolute error is the average of all absolute
errors. Comparing the data in Table 1. shows that the lower bound obtained by Ghorbani et
al. in Theorem 2.13 has the best correlation and the least amount of error. Among the lower
bounds, the bound obtained by Ghorbani et al. in Theorem 3.8 has the best correlation with
SDD, but considering the mean absolute errors, it seems that the bound obtained by Das et
al. in Theorem 3.2 is the best limit.
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