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Abstract. Let G = (V, E) be an ordered pair, where V(G) is a non-empty set of vertices and E(G)

is a set of edges called a graph. We denote a vertex by v, where v ∈ V(G) and edge by e, where
e = uv ∈ E(G). We denote degree of vertex v by dv which is defined as the number of edges adjacent
with vertex v. The distance between two vertices of G is the length of a shortest path connecting these
two vertices which is denoted by d(u,v) where u,v ∈ V(G). The eccentricity ecc(v) of a vertex v in G
is the distance between vertex v and vertex farthest from v in G. In this paper, we consider an infinite
family of nanostar dendrimers and then we compute its second eccentric Zagreb index. Ghorbani and
Hosseinzadeh introduced the second eccentric Zagreb index as EM2(G) = ∑uv∈E(G)

(
ecc(u)× ecc(v)

)
,

that ecc(u) denotes the eccentricity of vertex u and ecc(v) denotes the eccentricity of vertex v of G.

Keywords: molecular graph, eccentricity, Zagreb topological index, nanostar dendrimer, D3[n]
Mathematics Subject Classification (2010): 05C10.

*Corresponding author (Email address: mrfarahani88@gmail.com)
Received 7 February 2022; Revised 14 February 2022; Accepted 5 March 2022
First Publish Date: 10 March 2022

©Shahid Rajaee Teacher Training University23

http://jdma.sru.ac.ir
mailto: mrfarahani88@gmail.com


Farahani et al. / Journal of Discrete Mathematics and Its Applications 7 (2022) 23–28

1 Introduction

Chemical graph theory is a branch of mathematical chemistry which has an important
effect on the development of the chemical sciences. A topological index is a numerical value
associated with the chemical constitution of a certain chemical compound aiming to correlate
various physical and chemical properties, or some biological activity in it. Carbon nanostruc-
tures have found many potential industrial applications such as energy storage, gas sensors,
biosensors, nanoelectronic devices and chemical probes [23], just to name a few. Carbon al-
lotropes such as carbon nanocones and carbon nanotubes have been proposed as possible
molecular gas storage devices [1, 32].

The nanostar dendrimer is a part of a new group of macromolecules that seem photon
funnels just like artificial antennas and also is a great resistant of photo bleaching. Recently
some people investigated the mathematical properties of these nanostructures in [24, 29–31].

Let G = (V, E) be a simple connected molecular graph, the vertex and edge sets of graph
G are denoted by V(G) and E(G), respectively. Throughout this paper, graph means simple
connected graph [17,18,28]. If x,y ∈ V(G) then the distance d(u,v) between u and v is defined
as the length of a minimum path connecting u and v. The eccentricity ecc(u) of a vertex u in
G is the largest distance between u and any other vertex of G. The eccentric connectivity index
of the molecular graph G, was proposed by Sharma, Goswami and Madan [27] as,

ξ(G) = ∑
u∈V(G)

dvecc(v),

where dv is the degree of the vertex v and ecc(v) is the eccentricity of the vertex v.
The Zagreb topological indices was introduced by I. Gutman and N. Trinajstić in 1972

[17, 18]. The first and second zagreb indices are defined as

M1(G) = ∑
e=uv∈E(G)

(du + dv),

M2(G) = ∑
e=uv∈E(G)

(du × dv),

where dv denotes the degree of v. Mathematical properties of the first Zagreb index for gen-
eral graphs can be found in [17, 18, 26, 28].

Recently in 2012, the second eccentric Zagreb index was introduced by Ghorbani and Hos-
seinzadeh that is the eccentric version of second Zagreb index of the molecular graph G and
it is equal to [15]

EM2(G) = ∑
uv∈E(G)

[ecc(u)× ecc(v)],

where ecc(u) is the eccentricity of the vertex u and ecc(v) is the eccentricity of the vertex v.
In this study, we consider an infinite family of nanostar dendrimers and compute its sec-

ond eccentric Zagreb index.
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2 Results and discussion

Here, we compute the second eccentric Zagreb index of an infinite family of nanostar den-
drimers, we denote the nth growth of nanostar dendrimer for alln ≥ 1 by D3[n]. From Figure
1, one can see that the general representation of this family of nanostar has 21(2n+1) − 20
vertices/atoms and 24(2n+1 − 1) bonds/edges [11–13]. Also, the nanostar dendrimer D3[n]
has a core depicted in Figure 2 and the repeated element cycle C6 that we named by leaf, and
obviously the nth growth of nanostar dendrimer has

ξn3
n

∑
i=0

(2i) = 3
(2n+1 − 1

2 − 1
)
,

of leafs, see Figure 2.

Figure 1. An example of the nanostar dendrimer D3[n], for n = 3 [11–14].

Figure 2. The added graph in each branch and D3[0] is the primal structure of nanostar dendrimer
D3[n] [11–14].
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Consider the (n − 1)th growth of nanostar dendrimer in D3[n − 1] and we would like to
construct D3[n]. In every branch of D3[n], the leaf graph added. From Figure 2, one can see
that the maximum eccentricity of a leaf of D3[n] is 6, and also, the eccentricity of previous
vertices of core D3[0] are equal to 10. Thus, for eccentric of vertices in added leaf of nanostar
dendrimer D3[n − 1] to D3[n], we can following results:

For all i = 1,2, ....,n, we have 3(2i−1) vertices of kind labeled V1[i] with eccentricity 5i +
5(i + 1) and have 3(2i) vertices of kind labeled V2[i] with eccentricity 5i + 5(i + 1). Also there
are 3(2i+1) vertices of V3[i] and V4[i], with eccentricity 10i + 7 and 10i + 8, respectively. Also,
for the vertices of V5[i], its eccentricity is 10i + 9.

Therefore, by using above mention results, we have the following computations for third
Zagreb index of the nth growth of nanostar dendrimer D3[n].

Theorem 2.1. We consider the graph of nanostar dendrimer D3[n]. Then second eccentric Zagreb
index is equal to

EM2(D3[n]) = EM2(D3[0]) + 3 ∑
∀i=1,...,n

2i(100i2 + 110i + 30)

+ 6 ∑
∀i=1,...,n

2i(100i2 + 130i + 42) + 6 ∑
∀i=1,...,n

2i(100i2 + 150i + 56)

+ 6 ∑
∀i=1,...,n

2i(100i2 + 170i + 72) + 3(2n)(100n2 + 190n + 90).

Proof. Let G be the graph of nanostar dendrimer D3[n]. Hence, we have

EM2(D3[n]) = EM2(D3[0]) + ∑
∀i=1,...,n;uv∈E(D3[n])u∈V1[i],v∈V2[i]

(
ecc(u)× ecc(v)

)
+ ∑

∀i=1,...,n;uv∈E(D3[n])u∈V2[i],v∈V3[i]

(
ecc(u)× ecc(v)

)
+ ∑

∀i=1,...,n;uv∈E(D3[n])u∈V3[i],v∈V4[i]

(
ecc(u)× ecc(v)

)
+ ∑

∀i=1,...,n;uv∈E(D3[n])u∈V4[i],v∈V5[i]

(
ecc(u)× ecc(v)

)
+ ∑

vH∈(D3[n]),H∈V1[n+1],v∈V5[n]

(
ecc(H)× ecc(v)

)
,

EM2(D3[n]) = EM2(D3[0]) + ∑
∀i=1,...,n

3(2i)
(
ecc(V1[i])× ecc(V2[i])

)
+ ∑

∀i=1,...,n
3(2i)

(
ecc(V2[i])× ecc(V3[i])

)
+ ∑

∀i=1,...,n
3(2i)

(
ecc(V3[i])× ecc(V4[i])

)
+ ∑

∀i=1,...,n
3(2i)

(
ecc(V4[i])× ecc(V5[i])

)
+ 3(2n)

(
ecc(H)× ecc(V5[n])

)
.
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By using above values we get

EM2(D3[n]) = EM2(D3[0]) + ∑
∀i=1,...,n

3(2i)
(
(10i + 5)× (10i + 6)

)
+ ∑

∀i=1,...,n
3(2i+1)

(
(10i + 6)× (10i + 7)

)
+ ∑

∀i=1,...,n
3(2i+1)

(
(10i + 7)× (10i + 8)

)
+ ∑

∀i=1,...,n
3(2i+1)

(
(10i + 8)× (10i + 9)

)
+ 3(2n)

(
(10n + 10)× (10n + 9)

)
.

After doing some calculations, we have

EM2(D3[n]) = EM2(D3[0]) + 3 ∑
∀i=1,...,n

2i(100i2 + 110i + 30)

+ 6 ∑
∀i=1,...,n

2i(100i2 + 130i + 42) + 6 ∑
∀i=1,...,n

2i(100i2 + 150i + 56)

+ 6 ∑
∀i=1,...,n

2i(100i2 + 170i + 72) + 3(2n)(100n2 + 190n + 90).

3 Conclusion

In this paper, we discussed the eccentric connectivity index, first Zagreb index and sec-
ond Zagreb index. We have considered an infinite family of nanostar dendrimers and we
computed its second eccentric Zagreb index.
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