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Abstract. Strong edge-coloring of a graph is a proper edge coloring such that every edge of a
path of length 3 uses three different colors. The strong chromatic index of a graph is the minimum
number k such that there is a strong edge-coloring using k colors and is denoted by χ′

s(G). We give
efficient algorithms for strong edge-coloring of certain nanosheets using optimum number of colors.
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1 Introduction

A molecular graph is a collection of vertices representing the atoms in the molecule and a
set of edges representing the covalent bonds. Graph representation of molecular structures is
widely used in computational chemistry. A coloring of the edges of a simple graph is proper
if no pair of incident edges receives the same color. The edge-colorings of graphs are shown
to be useful in multiple quantum Nuclear Magnetic Resonance (NMR) from which one could
obtain various types of dipolar couplings present in a molecule. These dipolar couplings
can be assembled in different ways. Each such way corresponds to a possible structure of
the unknown compound. The edge-colorings of graphs are shown to enumerate unique
dipolar interactions among a given set of nuclei, thereby providing a technique for structure
elucidation from NMR [3].

A proper coloring C of the edges of a graph G is strong, if the edges of every path of
length 3 uses three different colors. Strong edge-coloring is also known as distance 2 edge
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coloring. A strong edge coloring of a graph is equivalent to a partition of the set of edges into
a collection of induced matchings. The minimum number of colors required to edge color a
graph G strongly is termed as strong chromatic index of G and is denoted by χ′

s(G). Strong
edge-coloring was introduced by Fouquet and Jolivet in 1983 [9]. Strong edge coloring is an
NP-complete problem [17]. The strong edge-colorings of graphs are also shown to have ap-
plications in the enumeration of unsaturated isomers of a class of organic compounds [2, 3].
They also have applications in statistical mechanics in enumerating the number of statistical
mechanical diagrams [20]. The study of kekule structures of chemical compounds have many
hidden treasures [21] and have for a long time been the focus of interest of scholars working
on the theory of benzenoid molecules [13]. A vast amount of theoretical work also has been
done on kekule structures [11, 14]. Further the strong edge-coloring of graphs enables classi-
fication of kekule structures into equivalence classes of structures such that all structures in
a class have the same resonance energy [12, 18].

2 Preliminaries

Definition 1. [4, 6] A proper edge coloring of a graph G is an assignment of “colors” to
the edges of the graph G so that no two adjacent edges have the same color. The minimum
number of colors required to color a graph G is known as chromatic index of graph G and is
denoted by χ′(G).

Definition 2. [8] A proper edge-coloring of a graph G is strong if every path of length 3
receives three different colors. The minimum number of colors required to edge-color a graph
G strongly is termed as strong chromatic index of G and is denoted by χ′

s(G).

Definition 3. [6] For a graph G, let V(G) and E(G) denote the vertex set and edge set of G
respectively. We say that H is a subgraph of G if V(H) ⊆ V(G) and E(H) ⊆ E(G).

Definition 4. [16] An edge-cut of a graph G is a set of edges in G whose removal produces a
subgraph with more components than the original graph G .

Lemma 2.1. Let H be a graph obtained from the cycle C4, on 4 vertices, by adding a pendent edge at
two adjacent vertices of C4. See Figure 1. Then χ′

s(H) = 6.

Proof. By definition the edges of C4 with 4 distinct colors. Paths of length 3 in H which
include a pendent edge as one of the edges include every edge of C4 in some path. Hence a
new color has to be assigned to each of the pendent edges. Therefore χ′

s(H) = 6.

Lemma 2.2. [7] If H is a subgraph of G, then χ′
s(G) ≥ χ′

s(H).

3 Nanosheets with strong chromatic index 6

Carbon nanosheets are mechanically stable two-dimensional materials with a thickness
of 1 nm and well defined physical and chemical properties. They are made by radiation
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Figure 1. The graph H.

induced cross-linking of aromatic self-assembled monolayers. As the nanosheet is stable
under an electron beam, patterns can also be written by electron beam induced deposition
(EBID). Because of their stability and flexibility, carbon nanosheets will likely find a multitude
of applications, including potential use as sensors, filtration membranes, sample supports,
semiconductors and even conductive coatings [22].

Carbon nanosheets are predicted to have many unique properties, such as magnetic mo-
ments 1000 times larger than previously expected for certain specific radii, or may be used as
a black body whose emissivity or absorbance is almost one [15].

Edges of nanosheet drawn horizontally are called horizontal edges, perpendicular to the
horizontal edges are called vertical edges, those edges that make an acute angle with the
horizontal edges are called acute edges and those edges that make an obtuse angle with the
horizontal edges are called obtuse edges.

3.1 C4C8(S)[2m;2n] nanosheet

A C4C8(S)[2m;2n] nanosheet is a trivalent decoration made by alternating squares C4

and octagons C8 [10]. It is a bi-regular graph with m number of rows and n number of
columns, each column comprising of octagons C8 viewed vertically and each row comprising
of octagons C8 viewed horizontally. It is a bipartite graph. The C4C8(S)[2m;2n] nanosheet
has 8mn vertices. See Figure 2.

A channel of C8’s and C4’s alternatively arranged horizontally beginning and ending with
C8 is termed a row. Similarly a channel of C8’s and C4’s alternatively arranged vertically is
termed a column of C4C8(S)[2m;2n]. The following result is an easy consequence of Lemma
2.1 and Lemma 2. 2.

Lemma 3.1. The strong chromatic index of C4C8(S)[2m;2n] is at least 6.

The algorithm 3.2 given below shows that χ′
s(C4C8(S)[2m;2n]) = 6.

Let a, o, v4, v8, h4, h8 denote an acute edge, an obtuse edge, a vertical edge of C4, a vertical
edge of C8, a horizontal edge of C4 and a horizontal edge of C8 respectively. Acute, obtuse,
vertical and horizontal edge-cuts are shown in Figure 2.

3.2 Algorithm for C4C8(S)[2m;2n] nanosheet

Input: C4C8(S)[2m;2n] nanosheet
Algorithm:
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Figure 2. Strong edge-coloring of C4C8(S)[6,8] nanosheet.

Step 1: Color obtuse edge-cuts as 1.
Step 2: Color acute edge-cuts as 3.
Step 3: Color v8 - edge-cuts of Row i i odd, sequentially as 4,4, 2,2, 4,4. . . .
Step 4: Color v8 - edge-cuts of Row i, i even, sequentially as 2,2, 4,4, 2,2. . . .
Step 5: Color h8 - edge-cuts of Column i, i odd, sequentially as 2,2, 4,4, 2,2. . . .
Step 6: Color h8 - edge-cuts of Column i, i even, sequentially as 4,4, 2,2, 4,4. . . .
Step 7: Color h4 - edge-cuts of Column i, i odd, sequentially as 5,6, 6,5, 5,6. . . .
Step 8: Color h4 - edge-cuts of Column i, i even, sequentially as 6,5, 5,6, 6,5. . . .
Step 9: Color v4 - edge-cuts of Row i, i odd, sequentially as 6,5, 5,6, 6,5. . . .
Step 10: Color v4 - edge-cuts of Row i, i even, sequentially as 5,6, 6,5, 5,6. . . . See Figure 2.
Output:χ′

s(C4C8(S)[2m;2n]) = 6.
Proof of correctness: Let G be (C4C8(S)[2m;2n] nanosheet. Paths of length 3 in G are of the
following category.
1. The 3 edges are distinct members of the set X = {a,o,v4,v8, h4, h8}.
2. One edge is h4 and the other two are v4.
3. One edge is v4 and the other two are h4.
In all three cases the edges receive distinct colors.

The following theorem is an easy consequence of Lemma 3.1 and the Algorithm 3.2.
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Theorem 3.2. Let G be a C4C8(S)[2m;2n] nanosheet. Then χ′
s(G) = 6.

4 C4C8(R)[2m;2n] nanosheet

A C4C8(R)[2m;2n] nanosheet is a trivalent decoration made by alternating squares C4 and
octagons C8 and it is a bi-regular graph with m number of rows and n number of columns.
The C4C8(R)[2m;2n] nanosheet has 4(m + 1)(n + 1) vertices [1]. A channel of C4 and K2

arranged horizontally beginning and ending with C4 is termed a row. Similarly a channel
of C4 and K2 arranged vertically is termed a column of C4C8(R)[2m;2n]. Consider a C4 in
C4C8(R)[2m;2n] as shown in Figure 3. Name the edges as TL, TR, BL and BR representing
Top Left, Top Right, Bottom Left and Bottom Right. The following algorithm always labels
the obtuse edges in the order TL and BR, the acute edges in the order TR and BL respectively.

TL TR

BL BR

Figure 3. Labelling of C4.

The following result is an easy consequence of Lemma 2.1 and 2. 2.

Lemma 4.1. The strong chromatic index of C4C8(R)[2m;2n] is at least 6.

4.1 Algorithm for C4C8(R)[2m;2n] nanosheet

Input: C4C8(R)[2m;2n] nanosheet
Algorithm:
Step 1: Color obtuse edge-cuts of Row i,i odd of C4, sequentially as 3,1, 6,5, 3,1, 6,5. . . .
Step 2: Color obtuse edge-cuts of Row i,i even of C4, sequentially as 5,6, 1,3, 5,6, 1,3. . . .
Step 3: Color acute edge-cuts of Row i,i odd of C4, sequentially as 5,6,1,3, 5,6,1,3. . . .
Step 4: Color acute edge-cuts of Row i,i even of C4, sequentially as 3,1,6,5, 3,1,6,5. . . .
Step 5: Color the horizontal edge-cuts as 2.
Step 6: Color the vertical edge-cuts as 4. See Figure 4.
Output:χ′

s(C4C8(R)[2m;2n]) = 6.
Proof of correctness: Let G be (C4C8(R)[2m;2n] nanosheet. Paths of length 3 in G are of the
following category.
1. The 3 edges are distinct members of the set X = {a,o,v, h}.
2. One edge is acute and the other two are obtuse.
3. One edge is obtuse and the other two are acute.
In all three cases the edges receive distinct colors.
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Figure 4. Strong edge-coloring of C4C8(R)[8,10] nanosheet.

The following theorem is an easy consequence of Lemma 4.1 and the Algorithm 4.1.

Theorem 4.2. Let G be a C4C8(R)[2m;2n] nanosheet. Then χ′
s(G) = 6.

5 C4C6C8[2m;2n] nanosheet

A C4C6C8[2m;2n] nanosheet is a trivalent decoration made by alternating squares C4,
hexagons C6 and octagons C8 and is a bi-regular graph with m number of hexagons in each
row and n number of hexagons in each column. The C4C6C8[2m;2n] nanosheet has 6mn ver-
tices [19]. The following result is an easy consequence of Lemma 2.5 and Lemma 2.6.

Lemma 5.1. The strong chromatic index of C4C6C8[2m;2n] is at least 6.

5.1 Algorithm for C4C6C8[2m;2n] nanosheet

Input: C4C6C8[2m;2n] nanosheet
Algorithm:
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Figure 5. Strong edge-coloring of C4C6C8[4,6] nanosheet.

Step 1: Color obtuse edge-cuts, sequentially as 1,1,6,6, 1,1,6,6. . . .
Step 2: Color acute edge-cuts, sequentially as 2,2,3,3, 2,2,3,3. . . .
Step 3: Color vertical edge-cuts of Row i, i odd, sequentially as 3,3, 6,6, 3,3,. . . .
Step 4: Color vertical edge-cuts of Row i, i even, sequentially as 1,1,2,2,1,1,. . . .
Step 5: Color horizontal edge-cuts as sequentially 4,5,5,4,4,5.
Step 6: Color binding vertical edge-cuts as 4. See Figure 5.
Output:χ′

s(C4C6C8[2m;2n]) = 6.
Proof of correctness: Let G be (C4C6C8[2m;2n] nanosheet. Paths of length 3 in G are of the
following category.
1. The 3 edges are distinct members of the set X = {a,o,v, h}.
2. One edge is horizontal and the other two are vertical.
3. One edge is vertical and the other two are horizontal.
4. One edge is binding horizontal and the other two are obtuse and acute.
In all four cases the edges receive distinct colors.

The following theorem is an easy consequence of Lemma 5.1 and the Algorithm 5.1.

Theorem 5.2. Let G be a C4C6C8[2m;2n] nanosheet. Then χ′
s(G) = 6.
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6 H -Naphtalenic [2m,2n] Nanosheet

A H -Naphtalenic [2m,2n] nanosheet is a trivalent decoration made by alternating squares
C4 ,pair of hexagons C6 and octagons C8 and it is a bi-regular graph with m number of rows
and n number of columns. The H -Naphtalenic [2m,2n] nanosheet has 10mn vertices [5].
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Figure 6. Strong edge-coloring of H -Naphtalenic [2m,2n] Nanosheet

The following result is an easy consequence of Lemma 2.5 and Lemma 2.6.

Lemma 6.1. The strong chromatic index of H -Naphtalenic [2m,2n] is at least 6.

6.1 Algorithm for H -naphtalenic [2m,2n] nanosheet

Input: H -naphtalenic [2m,2n] nanosheet
Algorithm:
Step 1: Color obtuse edge-cuts of Row i, i odd, sequentially as 3, 1, 1, 3, 3, 1, 1, 3.
Step 2: Color obtuse edge-cuts of Row i, i even, sequentially as 5, 3, 3, 1, 5, 3, 3, 1.
Step 3: Color acute edge-cuts of Row i, i odd, sequentially as 2, 4, 4, 2, 2, 4, 4, 2.
Step 4: Color acute edge-cuts of Row i, i even, sequentially as 4, 2, 2, 4, 4, 2, 2, 4.
Step 5: Color horizontal edge-cuts of Column i, i odd, sequentially as 2, 3, 4, 5.
Step 6: Color horizontal edge-cuts of Column i, i even, sequentially as 1, 4, 2, 3.
Step 7: Color vertical edge-cuts of Row i, i odd, sequentially as 5, 5, 5, 6, 6, 6, 5, 5, 5.
Step 8: Color vertical edge-cuts of Row i, i even, sequentially as 1, 1, 1, 6, 6, 6, 1, 1, 1.
Step 9: Color binding vertical edge-cuts, sequentially as 6, 6, 5, 5, 6, 6. See Figure 6.
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Output:χ′
s(H−naphtalenic[2m,2n]) = 6.

Proof of correctness: Let G be H -naphtalenic [2m,2n] nanosheet. The proof is similar to the
nanosheet C4C6C8[2m,2n].

The following theorem is an easy consequence of Lemma 6.1 and the Algorithm 6.1.

Theorem 6.2. Let G be a H -naphtalenic [2m,2n] nanosheet. Then χ′
s(G) = 6.

7 Conclusion

In this paper we developed an algorithms for strong edge-coloring of certain nanosheets
using optimum number of colors.
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[12] J. E. Graver, E. J. Hartung, Kekuléan benzenoids, J. Math. Chem. 52 (2014) 977–989.
[13] I. Gutman, B. Arsić, M. Denić, I. Stojanović, Benzenoid isomers with greatest and smallest Kekulé
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