On topological properties of boron triangular sheet $B T S(m, n)$, borophene chain $B_{36}(n)$ and melem chain $M C(n)$ nanostructures

Haidar Ali ${ }^{1, *}$, Abdul Qudair Baig ${ }^{2}$, Muhammad Kashif Shafiq ${ }^{1}$
${ }^{1}$ Department of Mathematics,Government College University, Faisalabad, Pakistan
${ }^{2}$ Department of Mathematics, COMSATS Institute of Information Technology, Attock Campus, Pakistan

Academic Editor: Ali Reza Ashrafi

Abstract

Topological indices are numerical parameters of a graph which characterize its topology and are usually graph invariant. In QSAR/QSPR study, physico-chemical properties and topological indices such as Randić, atom-bond connectivity ($A B C$) and geometric-arithmetic (GA) index are used to predict the bioactivity of chemical compounds. Graph theory has found a considerable use in this area of research. In this paper, we study and derive analytical closed results of general Randić index $R_{\alpha}(G)$ with $\alpha=1, \frac{1}{2},-1,-\frac{1}{2}$, for boron triangular sheet $B T S(m, n)$, borophene chain of $B_{36}(n)$ and melem chain $M C(n)$. We also compute the general first Zagreb, $A B C, G A, A B C_{4}$ and $G A_{5}$ indices of sheet and chains for the first time and give closed formulas of these degree based indices.

Keywords: general Randić index, atom-bond connectivity ($A B C$) index, geometric-arithmetic (GA) index, boron triangular, borophene, melem
Mathematics Subject Classification (2010): 05C09.

[^0]
1 Introduction and preliminary results

Graph theory has provided chemist with a variety of useful tools, such as topological indices. Molecules and molecular compounds are often modeled by molecular graph. A molecular graph is a representation of the structural formula of a chemical compound in terms of graph theory, whose vertices correspond to the atoms of the compound and edges correspond to chemical bonds. Cheminformatics is new subject which is a combination of chemistry, mathematics and information science. It studies Quantitative structure-activity (QSAR) and structure-property (QSPR) relationships that are used to predict the biological activities and properties of chemical compounds. In the QSAR /QSPR study, physico-chemical properties and topological indices such as Wiener index, Szeged index, Randić index, Zagreb indices and $A B C$ index are used to predict bioactivity of the chemical compounds.

A graph can be recognized by a numeric number, a polynomial, a sequence of numbers or a matrix. A topological index is a numeric quantity associated with a graph which characterize the topology of graph and is invariant under graph automorphism. There are some major classes of topological indices such as distance based topological indices, degree based topological indices and counting related polynomials and indices of graphs. Among these classes degree based topological indices are of great importance and play a vital role in chemical graph theory and particularly in chemistry. In more precise way, a topological index $\operatorname{Top}(G)$ of a graph, is a number with the property that for every graph H isomorphic to G, $\operatorname{Top}(H)=\operatorname{Top}(G)$. The concept of topological indices came from Wiener [24] while he was working on boiling point of paraffin, named this index as path number. Later on, the path number was renamed as Wiener index [5].

In this article, G is considered to be network with vertex set $V(G)$ and edge set $E(G)$, $\operatorname{deg}(u)$ is the degree of vertex $u \in V(G)$ and $S_{u}=\sum_{v \in N_{G}(u)} \operatorname{deg}(v)$ where $N_{G}(u)=\{v \in V(G) \mid$ $u v \in E(G)\}$. The notations used in this article are mainly taken from books [6,10].

Let G be a graph. Then the Wiener index of G is defined as

$$
\begin{equation*}
W(G)=\frac{1}{2} \sum_{(u, v)} d(u, v) \tag{1}
\end{equation*}
$$

where (u, v) is any ordered pair of vertices in G and $d(u, v)$ is $u-v$ geodesic.
The very first and oldest degree based topological index is Randić index [20] denoted by $R_{-\frac{1}{2}}(G)$ and introduced by Milan Randić and defined as

$$
\begin{equation*}
R_{-\frac{1}{2}}(G)=\sum_{u v \in E(G)} \frac{1}{\sqrt{\operatorname{deg}(u) \operatorname{deg}(v)}} . \tag{2}
\end{equation*}
$$

The general Randić index $R_{\alpha}(G)$ is the sum of $(\operatorname{deg}(u) \operatorname{deg}(v))^{\alpha}$ over all edges $e=u v \in E(G)$ defined as

$$
\begin{equation*}
R_{\alpha}(G)=\sum_{u v \in E(G)}(\operatorname{deg}(u) \operatorname{deg}(v))^{\alpha} \text { for } \alpha=1, \frac{1}{2},-1,-\frac{1}{2} . \tag{3}
\end{equation*}
$$

An important topological index introduced by Ivan Gutman and Trinajstić is the Zagreb index denoted by $M_{1}(G)$ and defined as

$$
\begin{equation*}
M_{1}(G)=\sum_{u v \in E(G)}(\operatorname{deg}(u)+\operatorname{deg}(v)) . \tag{4}
\end{equation*}
$$

One of the well－known degree based topological index is atom－bond connectivity（ABC）index introduced by Estrada et al．in［7］and defined as

$$
\begin{equation*}
A B C(G)=\sum_{u v \in E(G)} \sqrt{\frac{\operatorname{deg}(u)+\operatorname{deg}(v)-2}{\operatorname{deg}(u) \operatorname{deg}(v)}} . \tag{5}
\end{equation*}
$$

Another well－known connectivity topological descriptor is geometric－arithmetic（GA）index which was introduced by Vukičević et al．in［瑯evi膰？，瑯evi膰］and defined as

$$
\begin{equation*}
G A(G)=\sum_{u v \in E(G)} \frac{2 \sqrt{\operatorname{deg}(u) \operatorname{deg}(v)}}{(\operatorname{deg}(u)+\operatorname{deg}(v))} \tag{6}
\end{equation*}
$$

Only $A B C_{4}$ and $G A_{5}$ indices can be computed if we are able to find the edge partition of these interconnection networks based on sum of the degrees of end vertices of each edge in these graphs．The fourth version of $A B C$ index is introduced by Ghorbani et al．［8］and defined as

$$
\begin{equation*}
A B C_{4}(G)=\sum_{u v \in E(G)} \sqrt{\frac{S_{u}+S_{v}-2}{S_{u} S_{v}}} . \tag{7}
\end{equation*}
$$

Recently fifth version of $G A$ index is proposed by Graovac et al．［9］and defined as

$$
\begin{equation*}
G A_{5}(G)=\sum_{u v \in E(G)} \frac{2 \sqrt{S_{u} S_{v}}}{\left(S_{u}+S_{v}\right)} \tag{8}
\end{equation*}
$$

The general Randić index for $\alpha=1$ is the second Zagreb index for any graph G ．

2 Main results

We study the general Randić，first Zagreb，$A B C, G A, A B C_{4}$ and $G A_{5}$ indices and give closed formulae of these indices for boron triangular sheet $B T S(m, n)$ ，borophene chain of $B_{36}(n)$ and melem chain $M C(n)$ ．Imran et al．studied various degree based topological in－ dices for various networks like silicates，hexagonal，honeycomb and oxide in［12］．Nowadays there is an extensive research activity on $A B C$ and $G A$ indices and their variants，for further study of topological indices of various graph families see，［1－4，13－19，21，22］．

2．1 Results for $B T S(m, n), B_{36}(n)$ and $M C(n)$ nanostructures

In this paper，we calculate certain degree based topological indices of boron triangular sheet $B T S(m, n)$ ，borophene chain of $B_{36}(N)$ and melem chain $M C(n)$ nanostructures．We compute general Randić $R_{\alpha}(G)$ with $\alpha=\left\{1,-1, \frac{1}{2},-\frac{1}{2}\right\}, A B C, G A, A B C_{4}$ and $G A_{5}$ indices for $B T S(m, n), B_{36}(n)$ and $M C(n)$ nanostructurest 1

Figure 1. Boron triangular sheet (BTS(4, 4))).

Figure 2. Borophene chain $\left(B_{36}(n)(3)\right)$.
Theorem 2.1. Consider the boron triangular sheet $B T S(m, n)$ for $m=n \geq 3$. Then

$$
R_{\alpha}(B T S(m, n))= \begin{cases}-2(7 m-108 m n+7(2+n)), & \alpha=1 ; \\ 12+8 \sqrt{3}+4(-4+m+n)+ & \\ (4 \sqrt{6}+2 \sqrt{15}+3 \sqrt{30})(-2+m+n)+ & \\ 3 \sqrt{2}(4+m+n)-36(-1+m-m n+n), & \alpha=\frac{1}{2} ; \\ \frac{1}{720}(204+193 m+120 m n+193 n), & \alpha=-1 ; \\ \frac{1}{60}(80+40 \sqrt{3}+15(-4+m+n)+ & \\ (10 \sqrt{6}+8 \sqrt{5}+6 \sqrt{30})(-2+m+n)+ & \\ 10 \sqrt{2}(4+m+n)-60(-1+m-m n+n)), \alpha=-\frac{1}{2} .\end{cases}
$$

Proof. Let $G \cong B T S(m, n)$ be the boron triangular sheet. The boron triangular sheet $B T S(m, n)$ has $m+n+4$ vertices of degree $3, m+n-2$ vertices of degree $4, m+n-2$ vertices of degree 5 and $2 m n-m-n+1$ vertices of degree 6 . The edge set of $B T S(m, n)$ is divided into eight partitions based on the degree of end vertices. The first edge partition $E_{1}(B T S(m, n))$ contains 4 edges $u v$, where $\operatorname{deg}(u)=\operatorname{deg}(v)=3$. The second edge partition $E_{2}(B T S(m, n))$

Figure 3. Melem chain $(M C(4))$.

$\left(d_{u}, d_{v}\right),(u v \in E(G))$	Number of edges
$(3,3)$	4
$(3,4)$	4
$(3,5)$	$2(m+n-2)$
$(3,6)$	$m+n+4$
$(4,4)$	$m+n-4$
$(4,6)$	$2(m+n-2)$
$(5,6)$	$3(m+n-2)$
$(6,6)$	$6(m n-(m+n)+1)$

Table 1. Edge partition of boron triangular sheet $B T S(m, n)$ based on degrees of end vertices of each edge.
contains 4 edges $u v$, where $\operatorname{deg}(u)=3$ and $\operatorname{deg}(v)=4$. The third edge partition $E_{3}(B T S(m, n))$ contains $2 m+2 n-4$ edges $u v$, where $\operatorname{deg}(u)=3$ and $\operatorname{deg}(v)=5$. The fourth edge partition $E_{4}(B T S(m, n))$ contains $m+n+4$ edges $u v$, where $\operatorname{deg}(u)=3$ and $\operatorname{deg}(v)=6$. The fifth edge partition $E_{5}(B T S(m, n))$ contains $m+n-4$ edges $u v$, where $\operatorname{deg}(u)=\operatorname{deg}(v)=4$. The sixth edge partition $E_{6}(B T S(m, n))$ contains $2 m+2 n-4$ edges $u v$, where $\operatorname{deg}(u)=4$ and $\operatorname{deg}(v)=$ 6. The seventh edge partition $E_{7}(B T S(m, n))$ contains $3 m+3 n-6$ edges $u v$, where $\operatorname{deg}(u)=5$ and $\operatorname{deg}(v)=6$ and the eighth edge partition $E_{8}(B T S(m, n))$ contains $6 m n-6 m-6 n+6$ edges $u v$, where $\operatorname{deg}(u)=\operatorname{deg}(v)=6$. Table 1 shows such an edge partition of $B T S(m, n)$. Thus from (3) it follows that

$$
R_{\alpha}(G)=\sum_{u v \in E(G)}(\operatorname{deg}(u) \cdot \operatorname{deg}(v))^{\alpha} .
$$

Now, we apply the formula of $R_{\alpha}(G)$ for $\alpha=1$

$$
R_{1}(G)=\sum_{j=1}^{8} \sum_{u v \in E_{j}(G)} \operatorname{deg}(u) \cdot \operatorname{deg}(v) .
$$

By using edge partition given in Table 1, we get

$$
\begin{aligned}
R_{1}(G) & =9\left|E_{1}(B T S(m, n))\right|+12\left|E_{2}(B T S(m, n))\right|+15\left|E_{3}(B T S(m, n))\right|+18\left|E_{4}(B T S(m, n))\right| \\
& +16\left|E_{5}(B T S(m, n))\right|+24\left|E_{6}(B T S(m, n))\right|+30\left|E_{7}(B T S(m, n))\right|+36\left|E_{8}(B T S(m, n))\right| \\
& =-2(7 m-108 m n+7(2+n)) .
\end{aligned}
$$

We apply the formula of $R_{\alpha}(G)$ for $\alpha=\frac{1}{2}$

$$
R_{\frac{1}{2}}(G)=\sum_{j=1}^{8} \sum_{u v \in E_{j}(G)} \sqrt{\operatorname{deg}(u) \cdot \operatorname{deg}(v)} .
$$

By using edge partition given in Table 1, we get

$$
\begin{aligned}
R_{\frac{1}{2}}(G) & =3\left|E_{1}(B T S(m, n))\right|+2 \sqrt{3}\left|E_{2}(B T S(m, n))\right|+\sqrt{15}\left|E_{3}(B T S(m, n))\right| \\
& +3 \sqrt{2}\left|E_{4}(B T S(m, n))\right|+4\left|E_{5}(B T S(m, n))\right|+2 \sqrt{6}\left|E_{6}(B T S(m, n))\right| \\
& +\sqrt{30}\left|E_{7}(B T S(m, n))\right|+6\left|E_{8}(B T S(m, n))\right| \\
& =12+8 \sqrt{3}+4(-4+m+n)+(4 \sqrt{6}+2 \sqrt{15}+3 \sqrt{30})(-2+m+n) \\
& +3 \sqrt{2}(4+m+n)-36(-1+m-m n+n) .
\end{aligned}
$$

We apply the formula of $R_{\alpha}(G)$ for $\alpha=-1$. Then we have

$$
\begin{aligned}
R_{-1}(G) & =\sum_{j=1}^{8} \sum_{u v \in E_{j}(G)} \frac{1}{\operatorname{deg}(u) \cdot \operatorname{deg}(v)} \\
& =\frac{1}{9}\left|E_{1}(B T S(m, n))\right|+\frac{1}{12}\left|E_{2}(B T S(m, n))\right|+\frac{1}{15}\left|E_{3}(B T S(m, n))\right| \\
& +\frac{1}{18}\left|E_{4}(B T S(m, n))\right|+\frac{1}{16}\left|E_{5}(B T S(m, n))\right|+\frac{1}{24}\left|E_{6}(B T S(m, n))\right| \\
& +\frac{1}{30}\left|E_{7}(B T S(m, n))\right|+\frac{1}{36}\left|E_{8}(B T S(m, n))\right| \\
& =\frac{1}{720}(204+193 m+120 m n+193 n) .
\end{aligned}
$$

We apply the formula of $R_{\alpha}(G)$ for $\alpha=-\frac{1}{2}$. Then we have

$$
\begin{aligned}
R_{-\frac{1}{2}}(G) & =\sum_{j=1}^{8} \sum_{u v \in E_{j}(G)} \frac{1}{\sqrt{\operatorname{deg}(u) \cdot \operatorname{deg}(v)}} \\
& =\frac{1}{3}\left|E_{1}(B T S(m, n))\right|+\frac{\sqrt{3}}{6}\left|E_{2}(B T S(m, n))\right|+\frac{1}{\sqrt{15}}\left|E_{3}(B T S(m, n))\right| \\
& +\frac{\sqrt{2}}{6}\left|E_{4}(B T S(m, n))\right|+\frac{1}{4}\left|E_{5}(B T S(m, n))\right|+\frac{\sqrt{6}}{12}\left|E_{6}(B T S(m, n))\right| \\
& +\frac{1}{\sqrt{30}}\left|E_{7}(B T S(m, n))\right|+\frac{1}{6}\left|E_{8}(B T S(m, n))\right| \\
& =\frac{1}{60}(80+40 \sqrt{3}+15(-4+m+n)+(10 \sqrt{6}+8 \sqrt{5}+6 \sqrt{30})(-2+m+n) \\
& +10 \sqrt{2}(4+m+n)-60(-1+m-m n+n)) .
\end{aligned}
$$

In the following, we compute first Zagreb index of boron triangular sheet $B T S(m, n)$.
Theorem 2.2. For boron triangular sheet $G \cong B T S(m, n)$ for $m=n \geq 3$, We have

$$
M_{1}(B T S(m, n))=2(-5+7 m+36 m n+7 n)
$$

Proof. Let G be the boron triangular sheet $B T S(m, n)$. By using edge partition from Table 1, the result follows. From (4) we have

$$
\begin{aligned}
M_{1}(B T S(m, n)) & =\sum_{u v \in E(G)}(\operatorname{deg}(u)+\operatorname{deg}(v))=\sum_{j=1}^{8} \sum_{u v \in E_{j}(G)}(\operatorname{deg}(u)+\operatorname{deg}(v)) \\
& =6\left|E_{1}(B T S(m, n))\right|+7\left|E_{2}(B T S(m, n))\right|+8\left|E_{3}(B T S(m, n))\right| \\
& +9\left|E_{4}(B T S(m, n))\right|+8\left|E_{5}(B T S(m, n))\right|+10\left|E_{6}(B T S(m, n))\right| \\
& +11\left|E_{7}(B T S(m, n))\right|+12\left|E_{8}(B T S(m, n))\right| .
\end{aligned}
$$

By doing some calculation, we get $M_{1}(B T S(m, n))=2(-5+7 m+36 m n+7 n)$.
Now, we compute $A B C$ and $G A$ indices of boron triangular sheet $B T S(m, n)$.
Theorem 2.3. Let $G \cong B T S(m, n)$ be the boron triangular sheet, for $m=n \geq 3$, then

$$
\begin{aligned}
A B C(G) & =\frac{1}{60}(160+40 \sqrt{15}+15 \sqrt{6}(-4+m+n) \\
& +(40 \sqrt{3}+24 \sqrt{10}+18 \sqrt{30})(-2+m+n) \\
& +10 \sqrt{14}(4+m+n)-60 \sqrt{10}(-1+m-m n+n)) \\
G A(G) & =6+\frac{16}{7} \sqrt{3}-5 m+6 m n-5 n \\
& +\left(\frac{4}{5} \sqrt{6}+\frac{\sqrt{15}}{2}+\frac{6}{11} \sqrt{30}(-2+m+n)+\frac{2}{3} \sqrt{2}(4+m+n)\right)
\end{aligned}
$$

Proof. By using edge partition given in Table 1, we get the result. From (5) it follows that

$$
\begin{aligned}
A B C(G) & =\sum_{u v \in E(G)} \sqrt{\frac{\operatorname{deg}(u)+\operatorname{deg}(v)-2}{\operatorname{deg}(u) \cdot \operatorname{deg}(v)}}=\sum_{j=1}^{8} \sum_{u v \in E_{j}(G)} \sqrt{\frac{\operatorname{deg}(u)+\operatorname{deg}(v)-2}{\operatorname{deg}(u) \cdot \operatorname{deg}(v)}} \\
& =\frac{2}{3}\left|E_{1}(B T S(m, n))\right|+\frac{\sqrt{15}}{6}\left|E_{2}(B T S(m, n))\right|+\frac{\sqrt{10}}{5}\left|E_{3}(B T S(m, n))\right| \\
& +\frac{\sqrt{14}}{6}\left|E_{4}(B T S(m, n))\right|+\frac{\sqrt{6}}{4}\left|E_{5}(B T S(m, n))\right|+\frac{\sqrt{3}}{3}\left|E_{6}(B T S(m, n))\right| \\
& +\frac{\sqrt{30}}{10}\left|E_{7}(B T S(m, n))\right|+\frac{\sqrt{10}}{6}\left|E_{8}(B T S(m, n))\right| .
\end{aligned}
$$

By doing some calculation, we get

$$
\begin{aligned}
A B C(G) & =\frac{1}{60}(160+40 \sqrt{15}+15 \sqrt{6}(-4+m+n) \\
& +(40 \sqrt{3}+24 \sqrt{10}+18 \sqrt{30})(-2+m+n)+10 \sqrt{14}(4+m+n) \\
& -60 \sqrt{10}(-1+m-m n+n))
\end{aligned}
$$

and from (6) we get

$$
G A(G)=\sum_{u v \in E(G)} \frac{2 \sqrt{\operatorname{deg}(u) \operatorname{deg}(v)}}{(\operatorname{deg}(u)+\operatorname{deg}(v))} \sum_{j=1}^{8} \sum_{u v \in E_{j}(G)} \frac{2 \sqrt{\operatorname{deg}(u) \operatorname{deg}(v)}}{(\operatorname{deg}(u)+\operatorname{deg}(v))} .
$$

Then we have

$$
\begin{aligned}
G A(G) & \left.\left.=\left|E_{1}(B T S(m, n))\right|+\frac{4}{7} \sqrt{3}\left|E_{2}(B T S(m, n))\right|+\frac{\sqrt{15}}{4} \right\rvert\, E_{3}(\text { BTS }(m, n)) \right\rvert\, \\
& \left.\left.+\frac{2}{3} \sqrt{2}\left|E_{4}(B T S(m, n))\right|+\left|E_{5}(B T S(m, n))\right|+\frac{2}{5} \sqrt{6} \right\rvert\, E_{6}(\text { BTS }(m, n)) \right\rvert\, \\
& +\frac{2}{11} \sqrt{30}\left|E_{7}(B T S(m, n))\right|+\left|E_{8}(B T S(m, n))\right| .
\end{aligned}
$$

By doing some calculation, we get

$$
\begin{aligned}
G A(G) & =6+\frac{16}{7} \sqrt{3}-5 m+6 m n-5 n \\
& +\left(\frac{4}{5} \sqrt{6}+\frac{\sqrt{15}}{2}+\frac{6}{11} \sqrt{30}(-2+m+n)+\frac{2}{3} \sqrt{2}(4+m+n)\right)
\end{aligned}
$$

Now, we compute $A B C_{4}$ and $G A_{5}$ indices of boron triangular sheet $B T S(m, n)$. Let us consider an edge partition based on degree sum of neighbors of end vertices. Then the edge set $E(B T S(m, n))$ can be divided into twenty four edge partitions $E_{j}(B T S(m, n)), 9 \leq$ $j \leq 32$, where the edge partition $E_{9}(B T S(m, n))$ contains 4 edges $u v$ with $S_{u}=13$ and $S_{v}=$ 14, the edge partition $E_{10}(B T S(m, n))$ contains 4 edges $u v$ with $S_{u}=13$ and $S_{v}=19$, the edge partition $E_{11}(B T S(m, n))$ contains 4 edges $u v$ with $S_{u}=13$ and $S_{v}=27$, the edge partition $E_{12}(B T S(m, n))$ contains 4 edges $u v$ with $S_{u}=14$ and $S_{v}=24$, the edge partition $E_{13}(B T S(m, n))$ contains 4 edges $u v$ with $S_{u}=14$ and $S_{v}=27$, the edge partition $E_{14}(B T S(m, n))$ contains $2 m+2 n-8$ edges $u v$ with $S_{u}=16$ and $S_{v}=24$, the edge partition $E_{15}(B T S(m, n))$ contains $m+n-4$ edges $u v$ with $S_{u}=16$ and $S_{v}=31, E_{16}(B T S(m, n))$ contains 4 edges $u v$ with $S_{u}=19$ and $S_{v}=20, E_{17}(B T S(m, n))$ contains 4 edges $u v$ with $S_{u}=19$ and $S_{v}=27, E_{18}(B T S(m, n))$ contains 4 edges $u v$ with $S_{u}=19$ and $S_{v}=32, E_{19}(B T S(m, n))$ contains $m+n-8$ edges $u v$ with $S_{u}=S_{v}=20, E_{20}(B T S(m, n))$ contains $2 m+2 n-12$ edges $u v$ with $S_{u}=20$ and $S_{v}=32, E_{21}(B T S(m, n))$ contains 4 edges $u v$ with $S_{u}=24$ and $S_{v}=27$, $E_{22}(B T S(m, n))$ contains $2 m+2 n-8$ edges $u v$ with $S_{u}=24$ and $S_{v}=31, E_{23}(B T S(m, n))$ contains $m+n-2$ edges $u v$ with $S_{u}=24$ and $S_{v}=35, E_{24}(B T S(m, n))$ contains 4 edges $u v$ with $S_{u}=27$ and $S_{v}=32, E_{25}(B T S(m, n))$ contains 4 edges $u v$ with $S_{u}=27$ and $S_{v}=35$, $E_{26}(B T S(m, n))$ contains $2 m+2 n-8$ edges $u v$ with $S_{u}=31$ and $S_{v}=35, E_{27}(B T S(m, n))$ contains $m+n-4$ edges $u v$ with $S_{u}=31$ and $S_{v}=36, E_{28}(B T S(m, n))$ contains $m+n-6$ edges $u v$ with $S_{u}=S_{v}=32, E_{29}(B T S(m, n))$ contains 4 edges $u v$ with $S_{u}=32$ and $S_{v}=35$, $E_{30}(B T S(m, n))$ contains $2 m+2 n-12$ edges $u v$ with $S_{u}=32$ and $S_{v}=36, E_{31}(B T S(m, n))$ contains $3 m+3 n-10$ edges $u v$ with $S_{u}=35$ and $S_{v}=36$ and $E_{32}(B T S(m, n))$ contains $6 m n-15 m-15 n+34$ edges $u v$ with $S_{u}=S_{v}=36$.

Theorem 2.4. Let $G \cong B T S(m, n)$ be the boron triangular sheet, for $m=n \geq 5$, then

$$
\begin{aligned}
A B C_{4}(G) & =10 \sqrt{\frac{2}{91}}+4 \sqrt{\frac{30}{247}}+\frac{8}{3} \sqrt{\frac{11}{57}}+2 \sqrt{\frac{37}{95}}+2 \sqrt{\frac{3}{7}}+\sqrt{\frac{13}{14}}+\frac{7}{9} \sqrt{2}+\frac{2}{3} \sqrt{\frac{26}{7}} \\
& +\frac{8}{3 \sqrt{7}}+\frac{1}{3} \sqrt{\frac{19}{2}}+\frac{7}{\sqrt{38}}+\frac{152}{3 \sqrt{39}}+\frac{1}{18} \sqrt{\frac{35}{2}}(34-15 m+6 m n-15 n) \\
& +\frac{1}{10} \sqrt{\frac{19}{2}}(-8+m+n)+\left(\frac{1}{4} \sqrt{\frac{11}{3}}+\frac{1}{4} \sqrt{5}+\frac{1}{16} \sqrt{\frac{31}{2}}\right)(-6+m+n) \\
& +\left(\frac{3}{4} \sqrt{\frac{5}{31}}+\sqrt{\frac{53}{186}}+\frac{1}{6} \sqrt{\frac{65}{31}}+\frac{1}{4} \sqrt{\frac{19}{3}}+\frac{16}{\sqrt{1085}}\right)(-4+m+n) \\
& +\frac{1}{2} \sqrt{\frac{19}{70}}(-2+m+n)+\frac{1}{2} \sqrt{\frac{23}{105}}(-10+3 m+3 n), \\
G A_{5}(G) & =20+\frac{48}{17} \sqrt{2}+\frac{96}{59} \sqrt{6}+\frac{16}{19} \sqrt{21}+\frac{32}{51} \sqrt{38}+\frac{3}{5} \sqrt{39}+\frac{24}{41} \sqrt{42} \\
& +\frac{12}{23} \sqrt{57}+\frac{32}{67} \sqrt{70}+\frac{16}{39} \sqrt{95}+\frac{12}{31} \sqrt{105}+\frac{8}{27} \sqrt{182}+\frac{1}{4} \sqrt{247} \\
& -13 m+6 m n-13 n+\left(\frac{24}{17} \sqrt{2}+\frac{8}{13} \sqrt{10}\right)(-6+m+n) \\
& +\left(\frac{4}{5} \sqrt{6}+\frac{1100}{3149} \sqrt{31}+\frac{8}{55} \sqrt{186}+\frac{2}{33} \sqrt{1085}\right)(-4+m+n) \\
& +\frac{4}{59} \sqrt{210}(-2+m+n)+\frac{12}{71} \sqrt{35}(-10+3 m+3 n) .
\end{aligned}
$$

Proof. By using edge partition given in Table 2, we get the result. From (7) it follows that

$$
\begin{aligned}
A B C_{4}(G) & =\sum_{u v \in E(G)} \sqrt{\frac{S_{u}+S_{v}-2}{S_{u} S_{v}}}=\sum_{j=9}^{32} \sum_{u v \in E_{j}(G)} \sqrt{\frac{S_{u}+S_{v}-2}{S_{u} S_{v}}} \\
& =\frac{5}{\sqrt{182}}\left|E_{9}(B T S(m, n))\right|+\sqrt{\frac{30}{247}}\left|E_{10}(B T S(m, n))\right|+\frac{1}{3} \sqrt{\frac{38}{39}}\left|E_{11}(B T S(m, n))\right| \\
& +\frac{\sqrt{21}}{14}\left|E_{12}(B T S(m, n))\right|+\frac{\sqrt{182}}{42}\left|E_{13}(B T S(m, n))\right|+\frac{\sqrt{57}}{24}\left|E_{14}(B T S(m, n))\right| \\
& +\frac{3}{4} \sqrt{\frac{5}{31}}\left|E_{15}(B T S(m, n))\right|+\frac{1}{2} \sqrt{\frac{37}{95}}\left|E_{16}(B T S(m, n))\right|+\frac{2}{3} \sqrt{\frac{11}{57}}\left|E_{17}(B T S(m, n))\right| \\
& +\frac{1}{4} \frac{7}{\sqrt{38}}\left|E_{18}(B T S(m, n))\right|+\frac{\sqrt{38}}{20}\left|E_{19}(B T S(m, n))\right|+\frac{\sqrt{5}}{8}\left|E_{20}(B T S(m, n))\right| \\
& +\frac{7}{36} \sqrt{2}\left|E_{21}(B T S(m, n))\right|+\frac{1}{2} \sqrt{\frac{53}{186}}\left|E_{22}(B T S(m, n))\right|+\frac{3}{2} \sqrt{\frac{6}{210}}\left|E_{23}(B T S(m, n))\right| \\
& +\frac{\sqrt{38}}{24}\left|E_{24}(B T S(m, n))\right|+\frac{2}{21} \sqrt{7}\left|E_{25}(B T S(m, n))\right|+\frac{8}{\sqrt{1085}}\left|E_{26}(B T S(m, n))\right| \\
& +\frac{1}{6} \sqrt{\frac{65}{31}}\left|E_{27}(B T S(m, n))\right|+\frac{\sqrt{62}}{32}\left|E_{28}(B T S(m, n))\right|+\frac{\sqrt{182}}{56}\left|E_{29}(B T S(m, n))\right|
\end{aligned}
$$

$$
\left.\left.+\frac{\sqrt{33}}{24}\left|E_{30}(B T S(m, n))\right|+\frac{1}{6} \sqrt{\frac{69}{35}}\left|E_{31}(B T S(m, n))\right|+\frac{\sqrt{70}}{36} \right\rvert\, E_{32}(\text { BTS }(m, n)) \right\rvert\,
$$

Thus, we have

$$
\begin{aligned}
A B C_{4}(G) & =10 \sqrt{\frac{2}{91}}+4 \sqrt{\frac{30}{247}}+\frac{8}{3} \sqrt{\frac{11}{57}}+2 \sqrt{\frac{37}{95}}+2 \sqrt{\frac{3}{7}}+\sqrt{\frac{13}{14}}+\frac{7}{9} \sqrt{2}+\frac{2}{3} \sqrt{\frac{26}{7}} \\
& +\frac{8}{3 \sqrt{7}}+\frac{1}{3} \sqrt{\frac{19}{2}}+\frac{7}{\sqrt{38}}+\frac{152}{3 \sqrt{39}}+\frac{1}{18} \sqrt{\frac{35}{2}}(34-15 m+6 m n-15 n) \\
& +\frac{1}{10} \sqrt{\frac{19}{2}}(-8+m+n)+\left(\frac{1}{4} \sqrt{\frac{11}{3}}+\frac{1}{4} \sqrt{5}+\frac{1}{16} \sqrt{\frac{31}{2}}\right)(-6+m+n) \\
& +\left(\frac{3}{4} \sqrt{\frac{5}{31}}+\sqrt{\frac{53}{186}}+\frac{1}{6} \sqrt{\frac{65}{31}}+\frac{1}{4} \sqrt{\frac{19}{3}}+\frac{16}{\sqrt{1085}}\right)(-4+m+n) \\
& +\frac{1}{2} \sqrt{\frac{19}{70}}(-2+m+n)+\frac{1}{2} \sqrt{\frac{23}{105}}(-10+3 m+3 n) .
\end{aligned}
$$

From (8) we get

$$
G A_{5}(G)=\sum_{u v \in E(G)} \frac{2 \sqrt{S_{u} S_{v}}}{\left(S_{u}+S_{v}\right)}=\sum_{j=9}^{32} \sum_{u v \in E_{j}(G)} \frac{2 \sqrt{S_{u} S_{v}}}{\left(S_{u}+S_{v}\right)} .
$$

Then,

$$
\begin{aligned}
G A_{5}(G) & \left.\left.=2 \frac{\sqrt{182}}{27}\left|E_{9}(B T S(m, n))\right|+\frac{\sqrt{247}}{16}\left|E_{10}(B T S(m, n))\right|+3 \frac{\sqrt{39}}{20} \right\rvert\, E_{11}(\text { BTS }(m, n)) \right\rvert\, \\
& \left.\left.+4 \frac{\sqrt{21}}{19}\left|E_{12}(B T S(m, n))\right|+6 \frac{\sqrt{42}}{41}\left|E_{13}(B T S(m, n))\right|+2 \frac{\sqrt{6}}{5} \right\rvert\, E_{14}(\text { BTS }(m, n)) \right\rvert\, \\
& +8 \frac{\sqrt{31}}{47}\left|E_{15}(B T S(m, n))\right|+4 \frac{\sqrt{95}}{39}\left|E_{16}(B T S(m, n))\right|+3 \frac{\sqrt{57}}{23}\left|E_{17}(B T S(m, n))\right| \\
& \left.\left.+8 \frac{\sqrt{38}}{51}\left|E_{18}(B T S(m, n))\right|+\left|E_{19}(B T S(m, n))\right|+4 \frac{\sqrt{10}}{13} \right\rvert\, E_{20}(\text { BTS }(m, n)) \right\rvert\, \\
& +12 \frac{\sqrt{2}}{17}\left|E_{21}(B T S(m, n))\right|+4 \frac{\sqrt{186}}{55}\left|E_{22}(B T S(m, n))\right|+4 \frac{\sqrt{210}}{59}\left|E_{23}(B T S(m, n))\right| \\
& +24 \frac{\sqrt{6}}{59}\left|E_{24}(B T S(m, n))\right|+3 \frac{\sqrt{105}}{31}\left|E_{25}(B T S(m, n))\right|+\frac{\sqrt{1085}}{33}\left|E_{26}(B T S(m, n))\right| \\
& \left.+12 \frac{\sqrt{31}}{67} \left\lvert\, E_{27}(\text { BTS }(m, n))\left|+\left|E_{28}(B T S(m, n))\right|+8 \frac{\sqrt{70}}{67}\right| E_{29}(B T S(m, n))\right. \right\rvert\, \\
& +12 \frac{\sqrt{2}}{17}\left|E_{30}(B T S(m, n))\right|+12 \frac{\sqrt{35}}{71}\left|E_{31}(B T S(m, n))\right|+\left|E_{32}(B T S(m, n))\right| .
\end{aligned}
$$

Thus, we have

$$
\begin{aligned}
G A_{5}(G) & =20+\frac{48}{17} \sqrt{2}+\frac{96}{59} \sqrt{6}+\frac{16}{19} \sqrt{21}+\frac{32}{51} \sqrt{38}+\frac{3}{5} \sqrt{39}+\frac{24}{41} \sqrt{42}+\frac{12}{23} \sqrt{57}+\frac{32}{67} \sqrt{70} \\
& +\frac{16}{39} \sqrt{95}+\frac{12}{31} \sqrt{105}+\frac{8}{27} \sqrt{182}+\frac{1}{4} \sqrt{247}-13 m+6 m n-13 n \\
& +\left(\frac{24}{17} \sqrt{2}+\frac{8}{13} \sqrt{10}\right)(-6+m+n) \\
& +\left(\frac{4}{5} \sqrt{6}+\frac{1100}{3149} \sqrt{31}+\frac{8}{55} \sqrt{186}+\frac{2}{33} \sqrt{1085}\right)(-4+m+n) \\
& +\frac{4}{59} \sqrt{210}(-2+m+n)+\frac{12}{71} \sqrt{35}(-10+3 m+3 n)
\end{aligned}
$$

Chemical engineers have determined that a unique arrangement of 36 boron-atoms in a flat disc with a hexagonal hole in the middle may be preferred building blocks for borophene. A 36-atom cluster of boron, left, arranged as a flat disc with a hexagonal hole in the middle, fix the theoretical requirements for making a one-atom-thick boron chain, right, a theoretical nanomaterial dubbed borophene. A borophene chain $B_{36}(n)$ for $n \geq 2$ has order $32 n+4$ and size $81 n+3$.

Now, we calculate certain degree based topological indices of borophene chain $B_{36}(n)$ of dimension n. In the coming theorems we compute general Randić index $R_{\alpha}(G)$ with $\alpha=$ $\left\{1,-1, \frac{1}{2},-\frac{1}{2}\right\}, A B C, G A, A B C_{4}$ and $G A_{5}$ of $B_{36}(n)$.

Theorem 2.5. Consider the borophene chain $B_{36}(n)$ for $n \geq 2$. Then

$$
R_{\alpha}\left(B_{36}(n)\right)= \begin{cases}6(-32+373 n), & \alpha=1 ; \\ 8+8 \sqrt{5}(-1+n)+46 n+(6 \sqrt{2}+8 \sqrt{3})(2+n)+ & \\ 16 \sqrt{6}(1+2 n)+6 \sqrt{30}(-1+4 n)+18(-3+7 n), & \alpha=\frac{1}{2} ; \\ \frac{1}{1800}(1255+5732 n), & \alpha=-1 ; \\ \frac{1}{30}(-30+20 \sqrt{2}+40 \sqrt{3}-12 \sqrt{5}+20 \sqrt{6}-6 \sqrt{30}+ & \\ (171+10 \sqrt{2}+20 \sqrt{3}+12 \sqrt{3}+40 \sqrt{6}+24 \sqrt{30}) n), \alpha=-\frac{1}{2} .\end{cases}
$$

Proof. Let G be the borophene chanin $B_{36}(n)$. The borophene chain $B_{36}(n)$ has $2 n+4$ vertices of degree $3,8 n+4$ vertices of degree $4,8 n-2$ vertices of degree 5 and $14 n-2$ vertices of degree 6. The edge set of $B_{36}(n)$ is divided into eight partitions based on the degree of end vertices. The first edge partition $E_{1}\left(B_{36}(n)\right)$ contains $4 n+8$ edges $u v$, where $\operatorname{deg}(u)=$ 3 and $\operatorname{deg}(v)=4$. The second edge partition $E_{2}\left(B_{36}(n)\right)$ contains $2 n+4$ edges $u v$, where $\operatorname{deg}(u)=3$ and $\operatorname{deg}(v)=6$. The third edge partition $E_{3}\left(B_{36}(n)\right)$ contains $4 n+2$ edges $u v$, where $\operatorname{deg}(u)=\operatorname{deg}(v)=4$. The forth edge partition $E_{4}\left(B_{36}(n)\right)$ contains $4 n-4$ edges $u v$, where $\operatorname{deg}(u)=4$ and $\operatorname{deg}(v)=5$. The fifth edge partition $E_{5}\left(B_{36}(n)\right)$ contains $16 n+8$ edges $u v$, where $\operatorname{deg}(u)=4$ and $\operatorname{deg}(v)=6$. The sixth edge partition $E_{6}\left(B_{36}(n)\right)$ contains $6 n$ edges $u v$, where $\operatorname{deg}(u)=\operatorname{deg}(v)=5$. The seventh edge partition $E_{7}\left(B_{36}(n)\right)$ contains $24 n-6$ edges

Ali et al. / Journal of Discrete Mathematics and Its Applications 7 (2022) 39-61

$\left(S_{u}, S_{v}\right), u v \in E(G)$	Number of edges	$\left(S_{u}, S_{v}\right), u v \in E(G)$	Number of edges
$(13,14)$	4	$(24,27)$	4
$(13,19)$	4	$(24,31)$	$2 m+2 n-8$
$(13,27)$	4	$(24,35)$	$m+n-2$
$(14,24)$	4	$(27,32)$	4
$(14,27)$	4	$(27,35)$	4
$(16,24)$	$2 m+2 n-8$	$(31,35)$	$2 m+2 n-8$
$(16,31)$	$m+n-4$	$(31,36)$	$m+n-4$
$(19,20)$	4	$(32,32)$	$m+n-6$
$(19,27)$	4	$(32,35)$	4
$(19,32)$	4	$(32,36)$	$2 m+2 n-12$
$(20,20)$	$m+n-8$	$(35,36)$	$3 m+3 n-10$
$(20,32)$	$2 m+2 n-12$	$(36,36)$	$6 m n-15(m+n)+34$

Table 2. Edge partition of boron triangular sheet $B T S(m, n)$ based on degrees sum of end vertices of each edge.

$\left(d_{u}, d_{v}\right), u v \in E(G)$	Number of edges
$(3,4)$	$4 n+8$
$(3,6)$	$2 n+4$
$(4,4)$	$4 n+2$
$(4,5)$	$4 n-4$
$(4,6)$	$16 n+8$
$(5,5)$	$6 n$
$(5,6)$	$24 n-6$
$(6,6)$	$21 n-9$

Table 3. Edge partition of borophene chain $B_{36}(n)$ based on degrees of end vertices of each edge.
$u v$, where $\operatorname{deg}(u)=5$ and $\operatorname{deg}(v)=6$. The eight edge partition $E_{8}\left(B_{36}(n)\right)$ contains $21 n-9$ edges $u v$, where $\operatorname{deg}(u)=\operatorname{deg}(v)=6$. Table 3 shows such an edge partition of $B_{36}(n)$. Thus from (3) is follows that

$$
R_{\alpha}(G)=\sum_{u v \in E(G)}(\operatorname{deg}(u) \operatorname{deg}(v))^{\alpha}
$$

Now we apply the formula of $R_{\alpha}(G)$ for $\alpha=1$

$$
R_{1}(G)=\sum_{j=1}^{8} \sum_{u v \in E_{j}(G)} \operatorname{deg}(u) \cdot \operatorname{deg}(v) .
$$

By using edge partition given in Table 3, we get

$$
\begin{aligned}
R_{1}(G) & =12\left|E_{1}\left(B_{36}(n)\right)\right|+18\left|E_{2}\left(B_{36}(n)\right)\right|+16\left|E_{3}\left(B_{36}(n)\right)\right|+20\left|E_{4}\left(B_{36}(n)\right)\right| \\
& +24\left|E_{5}\left(B_{36}(n)\right)\right|+25\left|E_{6}\left(B_{36}(n)\right)\right|+30\left|E_{7}\left(B_{36}(n)\right)\right|+36\left|E_{8}\left(B_{36}(n)\right)\right| .
\end{aligned}
$$

Then $R_{1}(G)=6(-32+373 n)$. We apply the formula of $R_{\alpha}(G)$ for $\alpha=\frac{1}{2}$

$$
R_{\frac{1}{2}}(G)=\sum_{j=1}^{8} \sum_{u v \in E_{j}(G)} \sqrt{\operatorname{deg}(u) \cdot \operatorname{deg}(v)} .
$$

By using edge partition given in Table 3, we get

$$
\begin{aligned}
R_{\frac{1}{2}}(G) & =2 \sqrt{3}\left|E_{1}\left(B_{36}(n)\right)\right|+3 \sqrt{2}\left|E_{2}\left(B_{36}(n)\right)\right|+4\left|E_{3}\left(B_{36}(n)\right)\right|+2 \sqrt{5}\left|E_{4}\left(B_{36}(n)\right)\right| \\
& +2 \sqrt{6}\left|E_{5}\left(B_{36}(n)\right)\right|+5\left|E_{6}\left(B_{36}(n)\right)\right|+\sqrt{30}\left|E_{7}\left(B_{36}(n)\right)\right|+6\left|E_{8}\left(B_{36}(n)\right)\right| .
\end{aligned}
$$

Then

$$
\begin{aligned}
R_{\frac{1}{2}}(G) & =8+8 \sqrt{5}(-1+n)+46 n+(6 \sqrt{2}+8 \sqrt{3})(2+n)+16 \sqrt{6}(1+2 n) \\
& +6 \sqrt{30}(-1+4 n)+18(-3+7 n) .
\end{aligned}
$$

We apply the formula of $R_{\alpha}(G)$ for $\alpha=-1$

$$
R_{-1}(G)=\sum_{j=1}^{8} \sum_{u v \in E_{j}(G)} \frac{1}{\operatorname{deg}(u) \cdot \operatorname{deg}(v)} .
$$

We have

$$
\begin{aligned}
R_{-1}(G) & =\frac{1}{12}\left|E_{1}\left(B_{36}(n)\right)\right|+\frac{1}{18}\left|E_{2}\left(B_{36}(n)\right)\right|+\frac{1}{16}\left|E_{3}\left(B_{36}(n)\right)\right|+\frac{1}{20}\left|E_{4}\left(B_{36}(n)\right)\right| \\
& +\frac{1}{24}\left|E_{5}\left(B_{36}(n)\right)\right|+\frac{1}{25}\left|E_{6}\left(B_{36}(n)\right)\right|+\frac{1}{30}\left|E_{7}\left(B_{36}(n)\right)\right|+\frac{1}{36}\left|E_{8}\left(B_{36}(n)\right)\right| \\
& =\frac{1}{1800}(1255+5732 n) .
\end{aligned}
$$

We apply the formula of $R_{\alpha}(G)$ for $\alpha=-\frac{1}{2}$

$$
R_{-\frac{1}{2}}(G)=\sum_{j=1}^{8} \sum_{u v \in E_{j}(G)} \frac{1}{\sqrt{\operatorname{deg}(u) \cdot \operatorname{deg}(v)}} .
$$

Thus

$$
\begin{aligned}
R_{-\frac{1}{2}}(G) & =\frac{\sqrt{3}}{6}\left|E_{1}\left(B_{36}(n)\right)\right|+\frac{\sqrt{2}}{6}\left|E_{2}\left(B_{36}(n)\right)\right|+\frac{1}{4}\left|E_{3}\left(B_{36}(n)\right)\right|+\frac{\sqrt{5}}{10}\left|E_{4}\left(B_{36}(n)\right)\right| \\
& +\frac{\sqrt{6}}{12}\left|E_{5}\left(B_{36}(n)\right)\right|+\frac{1}{5}\left|E_{6}\left(B_{36}(n)\right)\right|+\frac{\sqrt{30}}{30}\left|E_{7}\left(B_{36}(n)\right)\right|+\frac{1}{6}\left|E_{8}\left(B_{36}(n)\right)\right| \\
& =\frac{1}{30}(-30+20 \sqrt{2}+40 \sqrt{3}-12 \sqrt{5}+20 \sqrt{6}-6 \sqrt{30} \\
& +(171+10 \sqrt{2}+20 \sqrt{3}+12 \sqrt{3}+40 \sqrt{6}+24 \sqrt{30}) n) .
\end{aligned}
$$

In the following theorem, we compute first Zagreb index of borophene chain $B_{36}(n)$.
Theorem 2.6. For borophene chain $G \cong B_{36}(n)$ for $n \geq 2$. Then

$$
M_{1}\left(B_{36}(n)\right)=-22+850 n .
$$

Proof. Let G be the borophene chain $B_{36}(n)$. By using edge partition from Table 3, the result follows. From (4) we have

$$
M_{1}\left(B_{36}(n)\right)=\sum_{u v \in E(G)}(\operatorname{deg}(u)+\operatorname{deg}(v))=\sum_{j=1}^{8} \sum_{u v \in E_{j}(G)}(\operatorname{deg}(u)+\operatorname{deg}(v)) .
$$

Then we have

$$
\begin{aligned}
M_{1}\left(B_{36}(n)\right) & =7\left|E_{1}\left(B_{36}(n)\right)\right|+9\left|E_{2}\left(B_{36}(n)\right)\right|+8\left|E_{3}\left(B_{36}(n)\right)\right|+9\left|E_{4}\left(B_{36}(n)\right)\right| \\
& +10\left|E_{5}\left(B_{36}(n)\right)\right|+10\left|E_{6}\left(B_{36}(n)\right)\right|+11\left|E_{7}\left(B_{36}(n)\right)\right|+12\left|E_{8}\left(B_{36}(n)\right)\right| .
\end{aligned}
$$

By doing some calculation, we get $M_{1}\left(B_{36}(n)\right)=-22+850 n$.
Now, we compute $A B C$ and $G A$ indices of borophene chain $B_{36}(n)$.
Theorem 2.7. Let $G \cong B_{36}(n)$ be the borophene chain, for $n \geq 2$, then

$$
\begin{aligned}
A B C(G) & =\frac{1}{60}(24 \sqrt{35}(-1+n)+144 \sqrt{2} n+(20 \sqrt{14}+40 \sqrt{15})(2+n) \\
& +(160 \sqrt{3}+30 \sqrt{6})(1+2 n)+36 \sqrt{30}(-1+4 n)+30 \sqrt{10}(-3+7 n)), \\
G A(G) & =-7+\frac{16}{9} \sqrt{5}(-1+n)+31 n+\left(\frac{48 \sqrt{3}+28 \sqrt{2}}{21}\right)(2+n) \\
& +\frac{16}{5} \sqrt{6}(1+2 n)+\frac{12}{11} \sqrt{30}(-1+4 n) .
\end{aligned}
$$

Proof. By using edge partition given in Table 3, we get the result. From (5) it follows that

$$
A B C(G)=\sum_{u v \in E(G)} \sqrt{\frac{\operatorname{deg}(u)+\operatorname{deg}(v)-2}{\operatorname{deg}(u) \cdot \operatorname{deg}(v)}}=\sum_{j=1}^{8} \sum_{u v \in E_{j}(G)} \sqrt{\frac{\operatorname{deg}(u)+\operatorname{deg}(v)-2}{\operatorname{deg}(u) \cdot \operatorname{deg}(v)}} .
$$

Then, we have

$$
\begin{aligned}
A B C(G) & =\frac{\sqrt{15}}{6}\left|E_{1}\left(B_{36}(n)\right)\right|+\frac{\sqrt{14}}{6}\left|E_{2}\left(B_{36}(n)\right)\right|+\frac{\sqrt{6}}{4}\left|E_{3}\left(B_{36}(n)\right)\right| \\
& +\frac{\sqrt{35}}{10}\left|E_{4}\left(B_{36}(n)\right)\right|+\frac{\sqrt{3}}{3}\left|E_{5}\left(B_{36}(n)\right)\right|+2 \frac{\sqrt{2}}{5}\left|E_{6}\left(B_{36}(n)\right)\right| \\
& +\frac{\sqrt{30}}{10}\left|E_{7}\left(B_{36}(n)\right)\right|+\frac{\sqrt{10}}{6}\left|E_{8}\left(B_{36}(n)\right)\right| .
\end{aligned}
$$

By doing some calculation, we get

$$
\begin{aligned}
A B C(G) & =\frac{1}{60}(24 \sqrt{35}(-1+n)+144 \sqrt{2} n+(20 \sqrt{14}+40 \sqrt{15})(2+n) \\
& +(160 \sqrt{3}+30 \sqrt{6})(1+2 n)+36 \sqrt{30}(-1+4 n)+30 \sqrt{10}(-3+7 n)) .
\end{aligned}
$$

From (6) we get

$$
G A(G)=\sum_{u v \in E(G)} \frac{2 \sqrt{\operatorname{deg}(u) \operatorname{deg}(v)}}{(\operatorname{deg}(u)+\operatorname{deg}(v))}=\sum_{j=1}^{8} \sum_{u v \in E_{j}(G)} \frac{2 \sqrt{\operatorname{deg}(u) \operatorname{deg}(v)}}{\operatorname{deg}(u)+\operatorname{deg}(v))} .
$$

By doing some calculation, we get

$$
\begin{aligned}
G A(G) & =4 \frac{\sqrt{3}}{7}\left|E_{1}\left(B_{36}(n)\right)\right|+2 \frac{2}{3}\left|E_{2}\left(B_{36}(n)\right)\right|+\left|E_{3}\left(B_{36}(n)\right)\right|+4 \frac{\sqrt{5}}{9}\left|E_{4}\left(B_{36}(n)\right)\right| \\
& +2 \frac{\sqrt{6}}{5}\left|E_{5}\left(B_{36}(n)\right)\right|+\left|E_{6}\left(B_{36}(n)\right)\right|+2 \frac{\sqrt{30}}{11}\left|E_{7}\left(B_{36}(n)\right)\right|+\left|E_{8}\left(B_{36}(n)\right)\right| .
\end{aligned}
$$

We have

$$
\begin{aligned}
G A(G) & =-7+\frac{16}{9} \sqrt{5}(-1+n)+31 n+\left(\frac{48 \sqrt{3}+28 \sqrt{2}}{21}\right)(2+n) \\
& +\frac{16}{5} \sqrt{6}(1+2 n)+\frac{12}{11} \sqrt{30}(-1+4 n) .
\end{aligned}
$$

Now, we compute $A B C_{4}$ and $G A_{5}$ indices of borophene chain $B_{36}(n)$. Let us consider an edge partition based on degree sum of neighbors of end vertices. Then the edge set $E\left(B_{36}(n)\right)$ can be divided into twenty four edge partitions $E_{j}\left(B_{36}(n)\right), 9 \leq j \leq 28$, where the edge partition $E_{9}\left(B_{36}(n)\right)$ contains $4 n+8$ edges $u v$ with $S_{u}=14$ and $S_{v}=19$, the edge partition $E_{10}\left(B_{36}(n)\right)$ contains $2 n+4$ edges $u v$ with $S_{u}=14$ and $S_{v}=28$, the edge partition $E_{11}\left(B_{36}(n)\right)$ contains 6 edges $u v$ with $S_{u}=S_{v}=19$, the edge partition $E_{12}\left(B_{36}(n)\right)$ contains $4 n-4$ edges $u v$ with $S_{u}=19$ and $S_{v}=20$, the edge partition $E_{13}\left(B_{36}(n)\right)$ contains $4 n+8$ edges $u v$ with $S_{u}=19$ and $S_{v}=28$, the edge partition $E_{14}\left(B_{36}(n)\right)$ contains $4 n+8$ edges $u v$ with $S_{u}=19$ and $S_{v}=30$, the edge partition $E_{15}\left(B_{36}(n)\right)$ contains $4 n-4$ edges $u v$ with $S_{u}=20$ and $S_{v}=26$, $E_{16}\left(B_{36}(n)\right)$ contains $4 n-4$ edges $u v$ with $S_{u}=20$ and $S_{v}=30, E_{17}\left(B_{36}(n)\right)$ contains $4 n-4$ edges $u v$ with $S_{u}=20$ and $S_{v}=31, E_{18}\left(B_{36}(n)\right)$ contains $4 n-4$ edges $u v$ with $S_{u}=26$ and $S_{v}=31, E_{19}\left(B_{36}(n)\right)$ contains $2 n-2$ edges $u v$ with $S_{u}=26$ and $S_{v}=35, E_{20}\left(B_{36}(n)\right)$ contains $8 n+4$ edges $u v$ with $S_{u}=S_{v}=28, E_{21}\left(B_{36}(n)\right)$ contains $12 n+12$ edges $u v$ with $S_{u}=28$ and $S_{v}=30, E_{22}\left(B_{36}(n)\right)$ contains $4 n-4$ edges $u v$ with $S_{u}=28$ and $S_{v}=31, E_{23}\left(B_{36}(n)\right)$ contains $4 n-4$ edges $u v$ with $S_{u}=28$ and $S_{v}=34, E_{24}\left(B_{36}(n)\right)$ contains $4 n-4$ edges $u v$ with $S_{u}=30$ and $S_{v}=31, E_{25}\left(B_{36}(n)\right)$ contains $4 n-4$ edges $u v$ with $S_{u}=31$ and $S_{v}=34, E_{26}\left(B_{36}(n)\right)$ contains $4 n-4$ edges $u v$ with $S_{u}=31$ and $S_{v}=35, E_{27}\left(B_{36}(n)\right)$ contains $4 n-4$ edges $u v$ with $S_{u}=34$ and $S_{v}=35$ and $E_{28}\left(B_{36}(n)\right)$ contains $n-1$ edges $u v$ with $S_{u}=S_{v}=35$.

Theorem 2.8. Let $G \cong B_{36}(n)$ be the borophene chain, for $n \geq 2$, then

$$
\begin{aligned}
A B C_{4}(G) & =\frac{36}{19}+\left(6 \sqrt{\frac{14}{527}}+2 \sqrt{\frac{134}{595}}+2 \sqrt{\frac{30}{119}}+2 \sqrt{\frac{118}{465}}+\sqrt{\frac{118}{455}}+2 \sqrt{\frac{57}{217}}\right. \\
& \left.+2 \sqrt{\frac{110}{403}}+2 \sqrt{\frac{22}{65}}+2 \sqrt{\frac{37}{95}}+\frac{4}{3} \sqrt{2}+\frac{2}{35} \sqrt{17}+\frac{14}{\sqrt{155}}+\frac{32}{\sqrt{1085}}\right) \\
& +4 \sqrt{\frac{3}{5}}(1+n)+\left(6 \sqrt{\frac{5}{133}}+2 \sqrt{\frac{94}{285}}+2 \sqrt{\frac{62}{133}}+\frac{2}{7} \sqrt{5}\right)(2+n)+\frac{3}{7} \sqrt{6}(1+2 n), \\
G A_{5}(G) & =9+\left(\frac{8}{5} \sqrt{6}+\frac{16}{39} \sqrt{95}+\frac{8}{23} \sqrt{130}+\frac{16}{51} \sqrt{155}+\frac{16}{59} \sqrt{217}+\frac{8}{31} \sqrt{238}+\frac{8}{57} \sqrt{806}\right. \\
& \left.+\frac{4}{61} \sqrt{910}+\frac{8}{61} \sqrt{930}+\frac{8}{65} \sqrt{1054}+\frac{4}{33} \sqrt{1085}+\frac{8}{69} \sqrt{1190}\right)(-1+n)+9 n \\
& +\frac{24}{29} \sqrt{210}(1+n)+\left(\frac{4}{3} \sqrt{2}+\frac{16}{47} \sqrt{133}+\frac{8}{33} \sqrt{266}+\frac{16}{49} \sqrt{570}\right)(2+n) .
\end{aligned}
$$

Proof. By using edge partition given in Table 4, we get the result. From (7) it follows that

$$
A B C_{4}(G)=\sum_{u v \in E(G)} \sqrt{\frac{S_{u}+S_{v}-2}{S_{u} S_{v}}}=\sum_{j=9}^{28} \sum_{u v \in E_{j}(G)} \sqrt{\frac{S_{u}+S_{v}-2}{S_{u} S_{v}}} .
$$

Then, we have

$$
\begin{aligned}
A B C_{4}(G) & =\sqrt{\frac{31}{266}}\left|E_{9}\left(B_{36}(n)\right)\right|+\frac{1}{7} \sqrt{5}\left|E_{10}\left(B_{36}(n)\right)\right|+\frac{6}{19}\left|E_{11}\left(B_{36}(n)\right)\right| \\
& +\frac{3}{2} \sqrt{\frac{5}{133}}\left|E_{13}\left(B_{36}(n)\right)\right|+\sqrt{\frac{47}{570}}\left|E_{14}\left(B_{36}(n)\right)\right|+\sqrt{\frac{15}{130}}\left|E_{14}\left(B_{36}(n)\right)\right| \\
& +\frac{1}{3} \sqrt{2}\left|E_{16}\left(B_{36}(n)\right)\right|+\frac{7}{2 \sqrt{155}}\left|E_{17}\left(B_{36}(n)\right)\right|+\sqrt{\frac{55}{806}}\left|E_{18}\left(B_{36}(n)\right)\right| \\
& +\sqrt{\frac{59}{910}}\left|E_{19}\left(B_{36}(n)\right)\right|+\frac{3}{28} \sqrt{6}\left|E_{20}\left(B_{36}(n)\right)\right|+\frac{\sqrt{15}}{15}\left|E_{21}\left(B_{36}(n)\right)\right| \\
& +\frac{1}{2} \sqrt{\frac{57}{217}}\left|E_{22}\left(B_{36}(n)\right)\right|+\sqrt{\frac{15}{238}}\left|E_{23}\left(B_{36}(n)\right)\right|+\sqrt{\frac{59}{930}}\left|E_{24}\left(B_{36}(n)\right)\right| \\
& +3 \sqrt{\frac{7}{1054}}\left|E_{25}\left(B_{36}(n)\right)\right|+\frac{8}{\sqrt{1085}}\left|E_{26}\left(B_{36}(n)\right)\right|+\sqrt{\frac{67}{1190}}\left|E_{27}\left(B_{36}(n)\right)\right| \\
& +\frac{2}{35} \sqrt{17}\left|E_{28}\left(B_{36}(n)\right)\right|+\frac{1}{2} \sqrt{\frac{37}{95}}\left|E_{12}\left(B_{36}(n)\right)\right| .
\end{aligned}
$$

Thus, we have

$$
\begin{aligned}
A B C_{4}(G) & =\frac{36}{19}+\left(6 \sqrt{\frac{14}{527}}+2 \sqrt{\frac{134}{595}}+2 \sqrt{\frac{30}{119}}+2 \sqrt{\frac{118}{465}}+\sqrt{\frac{118}{455}}+2 \sqrt{\frac{57}{217}}+2 \sqrt{\frac{110}{403}}\right. \\
& \left.+2 \sqrt{\frac{22}{65}}+2 \sqrt{\frac{37}{95}}+\frac{4}{3} \sqrt{2}+\frac{2}{35} \sqrt{17}+\frac{14}{\sqrt{155}}+\frac{32}{\sqrt{1085}}\right)+4 \sqrt{\frac{3}{5}}(1+n) \\
& +\left(6 \sqrt{\frac{5}{133}}+2 \sqrt{\frac{94}{285}}+2 \sqrt{\frac{62}{133}}+\frac{2}{7} \sqrt{5}\right)(2+n)+\frac{3}{7} \sqrt{6}(1+2 n),
\end{aligned}
$$

$\left(S_{u}, S_{v}\right), u v \in E(G)$	Number of edges	$\left(S_{u}, S_{v}\right), u v \in E(G)$	Number of edges
$(14,19)$	$4 n+8$	$(26,35)$	$2 n-2$
$(14,28)$	$2 n+4$	$(28,28)$	$8 n+4$
$(19,19)$	6	$(28,30)$	$12 n+12$
$(19,20)$	$4 n-4$	$(28,31)$	$4 n-4$
$(19,28)$	$4 n+8$	$(28,34)$	$4 n-4$
$(19,30)$	$4 n+8$	$(30,31)$	$4 n-4$
$(20,26)$	$4 n-4$	$(31,34)$	$4 n-4$
$(20,30)$	$4 n-4$	$(31,35)$	$4 n-4$
$(20,31)$	$4 n-4$	$(34,35)$	$4 n-4$
$(26,31)$	$4 n-4$	$(35,35)$	$n-1$

Table 4. Edge partition of borophene chain $B_{36}(n)$ based on degrees sum of end vertices of each edge.
and from (8) we get

$$
G A_{5}(G)=\sum_{u v \in E(G)} \frac{2 \sqrt{S_{u} S_{v}}}{\left(S_{u}+S_{v}\right)}=\sum_{j=9}^{28} \sum_{u v \in E_{j}(G)} \frac{2 \sqrt{S_{u} S_{v}}}{\left(S_{u}+S_{v}\right)} .
$$

Then, we have

$$
\begin{aligned}
G A_{5}(G) & =\frac{2}{33} \sqrt{266}\left|E_{9}\left(B_{36}(n)\right)\right|+\frac{2}{3} \sqrt{2}\left|E_{10}\left(B_{36}(n)\right)\right|+\left|E_{11}\left(B_{36}(n)\right)\right| \\
& +\frac{4}{39} \sqrt{95}\left|E_{12}\left(B_{36}(n)\right)\right|+\frac{4}{47} \sqrt{133}\left|E_{13}\left(B_{36}(n)\right)\right|+\frac{4}{49} \sqrt{570}\left|E_{14}\left(B_{36}(n)\right)\right| \\
& +\frac{2}{23} \sqrt{130}\left|E_{15}\left(B_{36}(n)\right)\right|+\frac{2}{5} \sqrt{6}\left|E_{16}\left(B_{36}(n)\right)\right|+\frac{4}{51} \sqrt{155}\left|E_{17}\left(B_{36}(n)\right)\right| \\
& +\frac{2}{57} \sqrt{806}\left|E_{18}\left(B_{36}(n)\right)\right|+\frac{2}{61} \sqrt{910}\left|E_{19}\left(B_{36}(n)\right)\right|+\left|E_{20}\left(B_{36}(n)\right)\right| \\
& +\frac{2}{29} \sqrt{210}\left|E_{21}\left(B_{36}(n)\right)\right|+\frac{4}{59} \sqrt{214}\left|E_{22}\left(B_{36}(n)\right)\right|+\frac{2}{31} \sqrt{238}\left|E_{23}\left(B_{36}(n)\right)\right| \\
& +\frac{2}{61} \sqrt{930}\left|E_{24}\left(B_{36}(n)\right)\right|+\frac{2}{65} \sqrt{1054}\left|E_{25}\left(B_{36}(n)\right)\right|+\frac{1}{33} \sqrt{1085}\left|E_{26}\left(B_{36}(n)\right)\right| \\
& +\frac{2}{69} \sqrt{1190}\left|E_{27}\left(B_{36}(n)\right)\right|+\left|E_{28}\left(B_{36}(n)\right)\right| \\
& =9+\left(\frac{8}{5} \sqrt{6}+\frac{16}{39} \sqrt{95}+\frac{8}{23} \sqrt{130}+\frac{16}{51} \sqrt{155}+\frac{16}{59} \sqrt{217}+\frac{8}{31} \sqrt{238}+\frac{8}{57} \sqrt{806}\right. \\
& \left.+\frac{4}{61} \sqrt{910}+\frac{8}{61} \sqrt{930}+\frac{8}{65} \sqrt{1054}+\frac{4}{33} \sqrt{1085}+\frac{8}{69} \sqrt{1190}\right)(-1+n)+9 n \\
& +\frac{24}{29} \sqrt{210}(1+n)+\left(\frac{4}{3} \sqrt{2}+\frac{16}{47} \sqrt{133}+\frac{8}{33} \sqrt{266}+\frac{16}{49} \sqrt{570}\right)(2+n) .
\end{aligned}
$$

The melem (2,5 , 8 -triamino-tri-s-triazine) $\mathrm{C}_{6} \mathrm{~N}_{7}\left(\mathrm{NH}_{2}\right)_{3}$ chain nanotube. The melem was obtained as a crystalline powder by thermal treatment of different less condensed $\mathrm{C}-\mathrm{N}-\mathrm{H}$
compounds (e.g., melamine $\mathrm{C}_{3} \mathrm{~N}_{3}\left(\mathrm{NH}_{2}\right)_{3}$, dicyandiamide $\mathrm{H}_{4} \mathrm{C}_{2} \mathrm{~N}_{4}$, ammonium dicyanamide $\mathrm{NH}_{4}\left[\mathrm{~N}(\mathrm{CN})_{2}\right]$, or cyanamide $\mathrm{H}_{2} \mathrm{CN}_{2}$, respectively) at temperatures up to $450^{\circ} \mathrm{C}$ in sealed glass ampules. The vertices and edges in melem chain are $18 n+4$ and $21 n+3$ respectively.

Now we compute Randić $R_{\alpha}(G)$ with $\alpha=\left\{1,-1, \frac{1}{2},-\frac{1}{2}\right\}, A B C, G A, A B C_{4}$ and $G A_{5}$ indices for melem chain $M C(n)$ nanotube.

Theorem 2.9. Consider the melem chain $M C(n)$ for $n \in \mathbb{N}$. Then

$$
R_{\alpha}(M C(n))= \begin{cases}135 n+9, & \alpha=1 \\ 3(6 n+4 \sqrt{6} n+\sqrt{3}(1+n)), & \alpha=\frac{1}{2} \\ 1+\frac{11 n}{3}, & \alpha=-1 \\ \sqrt{3}+(2+\sqrt{3}+2 \sqrt{6}) n, & \alpha=-\frac{1}{2}\end{cases}
$$

Proof. Let G be the melem chain. The melem chain $M C(n)$ has $3 n+3$ vertices of degree $1,6 n$ vertices of degree 2 , and $9 n+1$ vertices of degree 3 . The edge set of $M C(n)$ is divided into three partitions based on the degree of end vertices. The first edge partition $E_{1}(M C(n))$ contains $3 n+3$ edges $u v$, where $\operatorname{deg}(u)=1$ and $\operatorname{deg}(v)=3$. The second edge partition $E_{2}(M C(n))$ contains $12 n$ edges $u v$, where $\operatorname{deg}(u)=2$ and $\operatorname{deg}(v)=3$. The third edge partition $E_{3}(M C(n))$ contains $6 n$ edges $u v$, where $\operatorname{deg}(u)=\operatorname{deg}(v)=3$. Table 5 shows such an edge partition of $M C(n)$. Thus from (3) is follows that

$$
R_{\alpha}(G)=\sum_{u v \in E(G)}(\operatorname{deg}(u) \operatorname{deg}(v))^{\alpha}
$$

Now we apply the formula of $R_{\alpha}(G)$ for $\alpha=1$

$$
R_{1}(G)=\sum_{j=1}^{3} \sum_{u v \in E_{j}(G)} \operatorname{deg}(u) \operatorname{deg}(v)
$$

By using edge partition given in Table 5, we get

$$
R_{1}(G)=3\left|E_{1}(M C(n))\right|+6\left|E_{2}(M C(n))\right|+9\left|E_{3}(M C(n))\right|=135 n+9
$$

We apply the formula of $R_{\alpha}(G)$ for $\alpha=\frac{1}{2}$

$$
R_{\frac{1}{2}}(G)=\sum_{j=1}^{3} \sum_{u v \in E_{j}(G)} \sqrt{\operatorname{deg}(u) \cdot \operatorname{deg}(v)}
$$

By using edge partition given in Table 5, we get

$$
\begin{aligned}
R_{\frac{1}{2}}(G) & =\sqrt{3}\left|E_{1}(M C(n))\right|+\sqrt{6}\left|E_{2}(M C(n))\right|+3\left|E_{3}(M C(n))\right| \\
& =3(6 n+4 \sqrt{6} n+\sqrt{3}(1+n)) .
\end{aligned}
$$

$\left(d_{u}, d_{v}\right), u v \in E(G)$	Number of edges
$(1,3)$	$3 n+3$
$(2,3)$	$12 n$
$(3,3)$	$6 n$

Table 5. Edge partition of melem chain $M C(n)$ based on degrees of end vertices of each edge.
We apply the formula of $R_{\alpha}(G)$ for $\alpha=-1$

$$
\begin{aligned}
R_{-1}(G) & =\sum_{j=1}^{3} \sum_{u v \in E_{j}(G)} \frac{1}{\operatorname{deg}(u) \cdot \operatorname{deg}(v)} \\
& =\frac{1}{3}\left|E_{1}(M C(n))\right|+\frac{1}{6}\left|E_{2}(M C(n))\right|+\frac{1}{9}\left|E_{3}(M C(n))\right| \\
& =1+\frac{11 n}{3} .
\end{aligned}
$$

We apply the formula of $R_{\alpha}(G)$ for $\alpha=-\frac{1}{2}$

$$
\begin{aligned}
R_{-\frac{1}{2}}(G) & =\sum_{j=1}^{3} \sum_{u v \in E_{j}(G)} \frac{1}{\sqrt{\operatorname{deg}(u) \cdot \operatorname{deg}(v)}} \\
& =\frac{1}{\sqrt{3}}\left|E_{1}(M C(n))\right|+\frac{1}{\sqrt{6}}\left|E_{2}(M C(n))\right|+\frac{1}{3}\left|E_{3}(M C(n))\right| \\
& =\sqrt{3}+(2+\sqrt{3}+2 \sqrt{6}) n .
\end{aligned}
$$

In the following theorem, we compute first Zagreb index of melem chain $M C(n)$.
Theorem 2.10. For melem chain $G \cong M C(n)$ for $n \in \mathbb{N}$. Then

$$
M_{1}(M C(n))=12(1+9 n)
$$

Proof. Let G be the borophene chain $B_{36}(n)$. By using edge partition from Table 5, the result follows. From (4) we have

$$
\begin{aligned}
M_{1}(M C(n)) & =\sum_{u v \in E(G)}(\operatorname{deg}(u)+\operatorname{deg}(v)) \\
& =\sum_{j=1}^{3} \sum_{u v \in E_{j}(G)}(\operatorname{deg}(u)+\operatorname{deg}(v)) \\
& =4\left|E_{1}(M C(n))\right|+5\left|E_{2}(M C(n))\right|+6\left|E_{3}(M C(n))\right| .
\end{aligned}
$$

By doing some calculation, we get $M_{1}(M C(n))=12(1+9 n)$.
Now, we compute $A B C$ and $G A$ indices of melem chain $M C(n)$.

Theorem 2.11. Let $G \cong M C(n)$ be the melem chain, for $n \in \mathbf{N}$, then

$$
\begin{aligned}
A B C(G) & =\sqrt{6}+(4+6 \sqrt{2}+\sqrt{6}) n \\
G A(G) & =6 n+\frac{24 \sqrt{6}}{5} n+\frac{3 \sqrt{3}}{2}(1+n) .
\end{aligned}
$$

Proof. By using edge partition given in Table 5, we get the result. From (5) it follows that

$$
\begin{aligned}
A B C(G) & =\sum_{u v \in E(G)} \sqrt{\frac{\operatorname{deg}(u)+\operatorname{deg}(v)-2}{\operatorname{deg}(u) \cdot \operatorname{deg}(v)}} \\
& =\sum_{j=1}^{3} \sum_{u v \in E_{j}(G)} \sqrt{\frac{\operatorname{deg}(u)+\operatorname{deg}(v)-2}{\operatorname{deg}(u) \cdot \operatorname{deg}(v)}} \\
& =\sqrt{\frac{2}{3}}\left|E_{1}(M C(n))\right|+\frac{1}{\sqrt{2}}\left|E_{2}(M C(n))\right|+\frac{2}{3}\left|E_{3}(M C(n))\right| .
\end{aligned}
$$

By doing some calculation, we get $A B C(G)=\sqrt{6}+(4+6 \sqrt{2}+\sqrt{6}) n$, from (6) we get

$$
G A(G)=\sum_{u v \in E(G)} \frac{2 \sqrt{\operatorname{deg}(u) \operatorname{deg}(v)}}{(\operatorname{deg}(u)+\operatorname{deg}(v))}=\sum_{j=1}^{3} \sum_{u v \in E_{j}(G)} \frac{2 \sqrt{\operatorname{deg}(u) \operatorname{deg}(v)}}{(\operatorname{deg}(u)+\operatorname{deg}(v))} .
$$

By doing some calculation, we get

$$
\begin{aligned}
G A(G) & =\frac{\sqrt{3}}{2}\left|E_{1}(M C(n))\right|+\frac{2 \sqrt{6}}{5}\left|E_{2}(M C(n))\right|+\left|E_{3}(M C(n))\right|, \\
& =6 n+\frac{24 \sqrt{6}}{5} n+\frac{3 \sqrt{3}}{2}(1+n) .
\end{aligned}
$$

Now, we compute $A B C_{4}$ and $G A_{5}$ indices of melem chain $M C(n)$. Let us consider an edge partition based on degree sum of neighbors of end vertices. Then the edge set $E(M C(n))$ can be divided into six edge partitions $E_{j}(M C(n)), 4 \leq j \leq 9$, where the edge partition $E_{4}(M C(n))$ contains $2 n+4$ edges $u v$ with $S_{u}=3$ and $S_{v}=5$, the edge partition $E_{5}(M C(n))$ contains $n-1$ edges $u v$ with $S_{u}=3$ and $S_{v}=7$, the edge partition $E_{6}(M C(n))$ contains $n+2$ edges $u v$ with $S_{u}=5$ and $S_{v}=7$, the edge partition $E_{7}(M C(n))$ contains $12 n$ edges $u v$ with $S_{u}=6$ and $S_{v}=7$, the edge partition $E_{8}(M C(n))$ contains $2 n-2$ edges $u v$ with $S_{u}=S_{v}=7$ and the edge partition $E_{9}(M C(n))$ contains $3 n$ edges $u v$ with $S_{u}=7$ and $S_{v}=9$.

Theorem 2.12. Let $G \cong M C(n)$ be the melem chain, for $n \geq 2$, then

$$
\begin{aligned}
A B C_{4}(G) & =\left(2 \sqrt{\frac{2}{21}}+\frac{4 \sqrt{3}}{7}\right)(-1+n)+\left(\sqrt{2}+2 \sqrt{\frac{66}{7}}\right) n+\left(\sqrt{\frac{2}{7}}+2 \sqrt{\frac{2}{5}}\right)(2+n) \\
G A_{5}(G) & =-2+\frac{1}{5} \sqrt{21}(-1+n)+\left(2+\frac{9 \sqrt{7}}{8}+\frac{24 \sqrt{42}}{13}\right) n \\
& +\left(\frac{1}{2} \sqrt{15}+\frac{1}{6} \sqrt{35}\right)(2+n) .
\end{aligned}
$$

$\left(S_{u}, S_{v}\right), u v \in E(G)$	Number of edges
$(3,5)$	$2 n+4$
$(3,7)$	$n-1$
$(5,7)$	$n+2$
$(6,7)$	$12 n$
$(7,7)$	$2 n-2$
$(7,9)$	$3 n$

Table 6. Edge partition of Melem chain $M C(n)$ based on degrees sum of end vertices of each edge.
Proof. By using edge partition given in Table 6, we get the result. From (7) it follows that

$$
\begin{aligned}
A B C_{4}(G) & =\sum_{u v \in E(G)} \sqrt{\frac{S_{u}+S_{v}-2}{S_{u} S_{v}}}=\sum_{j=4}^{9} \sum_{u v \in E_{j}(G)} \sqrt{\frac{S_{u}+S_{v}-2}{S_{u} S_{v}}} \\
& =\sqrt{\frac{2}{5}}\left|E_{4}(M C(n))\right|+\frac{2 \sqrt{2}}{\sqrt{21}}\left|E_{5}(M C(n))\right|+\sqrt{\frac{2}{7}}\left|E_{6}(M C(n))\right| \\
& +\sqrt{\frac{11}{42}}\left|E_{7}(M C(n))\right|+\frac{2 \sqrt{3}}{7}\left|E_{8}(M C(n))\right|+\frac{\sqrt{2}}{3}\left|E_{9}(M C(n))\right| \\
& =\left(2 \sqrt{\frac{2}{21}}+\frac{4 \sqrt{3}}{7}\right)(-1+n)+\left(\sqrt{2}+2 \sqrt{\frac{66}{7}}\right) n+\left(\sqrt{\frac{2}{7}}+2 \sqrt{\frac{2}{5}}\right)(2+n),
\end{aligned}
$$

and from (8) we get

$$
\begin{aligned}
G A_{5}(G) & =\sum_{u v \in E(G)} \frac{2 \sqrt{S_{u} S_{v}}}{\left(S_{u}+S_{v}\right)}=\sum_{j=4}^{9} \sum_{u v \in E_{j}(G)} \frac{2 \sqrt{S_{u} S_{v}}}{\left(S_{u}+S_{v}\right)} \\
& =\frac{\sqrt{15}}{4}\left|E_{4}(M C(n))\right|+\frac{\sqrt{21}}{5}\left|E_{5}(M C(n))\right|+\frac{\sqrt{35}}{6}\left|E_{6}(M C(n))\right| \\
& +\frac{2 \sqrt{42}}{13}\left|E_{7}(M C(n))\right|+\left|E_{8}(M C(n))\right|+\frac{\sqrt{63}}{8}\left|E_{9}(M C(n))\right| \\
& =-2+\frac{1}{5} \sqrt{21}(-1+n)+\left(2+\frac{9 \sqrt{7}}{8}+\frac{24 \sqrt{42}}{13}\right) n+\left(\frac{1}{2} \sqrt{15}+\frac{1}{6} \sqrt{35}\right)(2+n) .
\end{aligned}
$$

3 Conclusion

In this paper, certain degree based topological indices, namely general Randić index, atomic-bond connectivity index $(A B C)$, geometric-arithmetic index ($G A$) and first Zagreb index for boron triangular sheet $B T S(m, n)$, borophene chain of $B_{36}(n)$ and melem chain $M C(n)$ were studied for the first time and analytical closed formulas for these nanostructure were determined which will help the people working in chemical science to understand and explore the underlying topologies of these nanostructures.

4 Acknowledgment

The authors are very grateful to the referees for their careful reading with corrections and useful comments, which improved this work very much.

References

[1] H. Ali, A. Q. Baig, M. K. Shafiq, On topological properties of hierarchical interconnection networks, J. Appl. Math. Comput. 55 (1-2) (2017) 313-334.
[2] M. Bača, J. Horváthová, M. Mokrišová, A. Suhányiovǎ, On topological indices of fullerenes, Appl. Math. Comput. 251 (2015) 154-161.
[3] A. Q. Baig, M. Imran, H. Ali, Computing Omega, Sadhana and PI polynomials of benzoid carbon nanotubes, OAM-RC. 9 (2015) 248-255.
[4] A. Q. Baig, M. Imran, H. Ali, On topological indices of poly oxide, poly silicate, DOX, and DSL networks, Can. J. Chem. 93 (2015) 1-10.
[5] M. Deza, P. W. Fowler, A. Rassat, K. M. Rogers, Fullerenes as tiling of surfaces, J. Chem. Inf. Comput. Sci. 40 (2000) 550-558.
[6] M. V. Diudea, I. Gutman, J. Lorentz, Molecular Topology, Nova, Huntington, 2001.
[7] E. Estrada, L. Torres, L. Rodríguez, I. Gutman, An atom-bond connectivity index: Modelling the enthalpy of formation of alkanes, Indian J. Chem. 37A (1998) 849-855.
[8] M. Ghorbani, M. A. Hosseinzadeh, Computing $A B C_{4}$ index of nanostar dendrimers, Optoelectron. Adv. Mater. Rapid Commun. 4 (2010) 1419-1422.
[9] A. Graovac, M. Ghorbani, M. A. Hosseinzadeh, Computing fifth geometric-arithmetic index for nanostar dendrimers, J. Math. Nanosci. 1 (2011) 33-42.
[10] I. Gutman, O. E. Polansky, Mathematical Concepts in Organic Chemistry, Springer-Verlag, New York, 1986.
[11] S. Hayat, M. Imran, Computation of certain topological indices of nanotubes, J. Comput. Theor. Nanosci. 12 (2015) 70-76.
[12] S. Hayat, M. Imran, Computation of topological indices of certain networks, Appl. Math. Comput. 240 (2014) 213-228.
[13] M. Imran, A. Q. Baig, H. Ali, On topological properties of dominating David derived graphs, Can. J. Chem. 94 (2016) 137-148.
[14] M. Imran, A. Q. Baig, H. Ali, On molecular topological properties of hex-derived graphs, J. Chemometrics 30 (2016) 121-129.
[15] M. Imran, A. Q. Baig, H. Ali, S. U. Rehman, On topological properties of poly honeycomb graphs, Period. Math. Hung. 73 (2016) 100-119.
[16] A. Iranmanesh, M. Zeraatkar, Computing GA index for some nanotubes, Optoelectron. Adv. Mater. Rapid Commun. 4 (2010) 1852-1855.
[17] W. Lin, J. Chen, Q. Chen, T. Gao, X. Lin, B. Cai, Fast computer search for trees with minimal ABC index based on tree degree sequences, MATCH Commun. Math. Comput. Chem. 72 (2014) 699-708.
[18] P. D. Manuel, M. I. Abd-El-Barr, I. Rajasingh, B. Rajan, An efficient representation of Benes networks and its applications, J. Discrete Algorithms 6 (2008) 11-19.
[19] J. L. Palacios, A resistive upper bound for the ABC index, MATCH Commun. Math. Comput. Chem. 72 (2014) 709-713.
[20] M. Randić, On Characterization of molecular branching, J. Amer. Chem. Soc. 97 (1975) 6609-6615.
[21] F. Simonraj, A. George, Embedding of poly honeycomb networks and the metric dimension of star of david network, GRAPH-HOC 4 (2012) 11-28.
[22] F. Simonraj, A. George, Topological properties of few poly Oxide, poly Silicate, DOX and DSL networks, Int. j. future comput. commun. 2 (2013) 90-95.
[23] D. Vukičević, B. Furtula, Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges, J. Math. Chem. 46 (2009) 1369-1376.
[24] H. Wiener, Structural determination of paraffin boiling points, J. Amer. Chem. Soc. 69 (1947) 17-20.

Citation: H. Ali, A. Q. Baig, M. K. Shafiq, On topological properties of boron triangular sheet BTS (m, n), borophene chain $B_{36}(n)$ and melem chain $M C(n)$ nanostructures, J. Disc. Math. Appl. 7(1) (2022) 39-61.
d. https://doi.org/10.22061/jdma.2022.1932

COPYRIGHTS
©2023 The author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, as long as the original authors and source are cited. No permission is required from the authors or the publishers.

[^0]: *Corresponding author (Email address: haidar3830@gmail.com)
 Received 1 February 2022; Revised 6 February 2022; Accepted 23 February 2022
 First Publish Date: 10 March 2022

