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1 Introduction and preliminary results

Graph theory has provided chemist with a variety of useful tools, such as topological in-
dices. Molecules and molecular compounds are often modeled by molecular graph. A molec-
ular graph is a representation of the structural formula of a chemical compound in terms
of graph theory, whose vertices correspond to the atoms of the compound and edges corre-
spond to chemical bonds. Cheminformatics is new subject which is a combination of chemistry,
mathematics and information science. It studies Quantitative structure-activity (QSAR) and
structure-property (QSPR) relationships that are used to predict the biological activities and
properties of chemical compounds. In the QSAR /QSPR study, physico-chemical properties
and topological indices such as Wiener index, Szeged index, Randi¢ index, Zagreb indices
and ABC index are used to predict bioactivity of the chemical compounds.

A graph can be recognized by a numeric number, a polynomial, a sequence of numbers
or a matrix. A topological index is a numeric quantity associated with a graph which char-
acterize the topology of graph and is invariant under graph automorphism. There are some
major classes of topological indices such as distance based topological indices, degree based
topological indices and counting related polynomials and indices of graphs. Among these
classes degree based topological indices are of great importance and play a vital role in chem-
ical graph theory and particularly in chemistry. In more precise way, a topological index
Top(G) of a graph, is a number with the property that for every graph H isomorphic to G,
Top(H) = Top(G). The concept of topological indices came from Wiener [24] while he was
working on boiling point of paraffin, named this index as path number. Later on, the path
number was renamed as Wiener index [5].

In this article, G is considered to be network with vertex set V(G) and edge set E(G),

deg(u) is the degree of vertex u € V(G) and S, = Y. deg(v) where Ng(u) = {v € V(G) |
vENG (1)
uv € E(G)}. The notations used in this article are mainly taken from books [6,10].

Let G be a graph. Then the Wiener index of G is defined as
1
W(G) = 5 Y d(u,v), (1)
(u,0)

where (u,v) is any ordered pair of vertices in G and d(u,v) is u — v geodesic.
The very first and oldest degree based topological index is Randi¢ index [20] denoted by
R_ 1 (G) and introduced by Milan Randi¢ and defined as

1
(©)= L aetwies o) )

The general Randi¢ index R, (G) is the sum of (deg(u)deg(v))* over all edges e = uv € E(G)
defined as

Ri(G)= Y (deg(u)deg(v))* for a = 1,%,—1,—%. (3)
uv€E(G)
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An important topological index introduced by Ivan Gutman and Trinajsti¢ is the Zagreb index
denoted by M;(G) and defined as

Mi(G)= ) (deg(u)+deg(v)). 4
uveE(G)

One of the well-known degree based topological index is atom-bond connectivity (ABC) index
introduced by Estrada ef al. in [7] and defined as

deg(u) + deg(v) —2
ABC(G) = . 5
) MGZE: deg(u)deg(v) ©

Another well-known connectivity topological descriptor is geometric-arithmetic (GA) index
which was introduced by Vukicevi¢ et al. in [[ifevill&?, Hfevilif] and defined as

B 2\/deg(u)deg(v)
CACV= | L eglu) + deglo) ©

Only ABC,4 and GAs indices can be computed if we are able to find the edge partition of these
interconnection networks based on sum of the degrees of end vertices of each edge in these
graphs. The fourth version of ABC index is introduced by Ghorbani et al. [8] and defined as

Su+5Sy—2
ABC4(G)= ) % (7)
uveE(G) u-v
Recently fifth version of GA index is proposed by Graovac et al. [9] and defined as
24/5,5
GAs(G)= ), (S—J:Sv) (8)
uv€E(G) \7H v

The general Randi¢ index for a« =1 is the second Zagreb index for any graph G.

2 Main results

We study the general Randi¢, first Zagreb, ABC, GA, ABC4 and GA5 indices and give
closed formulae of these indices for boron triangular sheet BTS(m,n), borophene chain of
Bss(n) and melem chain MC(n). Imran et al. studied various degree based topological in-
dices for various networks like silicates, hexagonal, honeycomb and oxide in [12]. Nowadays
there is an extensive research activity on ABC and GA indices and their variants, for further
study of topological indices of various graph families see, [1-4,13-19,21,22].

2.1 Results for BTS(m,n), Bzs(n) and MC(n) nanostructures

In this paper, we calculate certain degree based topological indices of boron triangular
sheet BTS(m,n), borophene chain of Bss(N) and melem chain MC(n) nanostructures. We
compute general Randi¢ R, (G) witha = {1,—1,3,—3}, ABC, GA, ABC, and GAs indices for
BTS(m,n), Bsg(n) and MC(n) nanostructure#l
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Figure 2. Borophene chain (Bzs(n)(3)).

Theorem 2.1. Consider the boron triangular sheet BTS(m,n) for m = n > 3. Then

e

—2(7m —108mn +7(2 +n)), =1
12+8V3+4(—4+m+n)+

(4v/6 4+ 2V/15 +3+/30) (=2 + m +n)+
3v2(4d+m+n) —36(—1+m—mn+n),
75(204 + 193m + 120mn + 193n),

o (80 +40v3 +15(—4 +m +n)+
(10v/6 + 85+ 6v/30)(—2 + m +n)+
10vV2(4+m+n) —60(—1+m—mn+n)), a=—

4

N[ —

Ry(BTS(m,n)) =

44
44

N[—

\

Proof. Let G = BTS(m,n) be the boron triangular sheet. The boron triangular sheet BTS(m,n)
has m + n + 4 vertices of degree 3, m 4+ n — 2 vertices of degree 4, m 4+ n — 2 vertices of
degree 5 and 2mn — m — n + 1 vertices of degree 6. The edge set of BT'S(m,n) is divided into
eight partitions based on the degree of end vertices. The first edge partition E1(BTS(m,n))
contains 4 edges uv, where deg(u) = deg(v) = 3. The second edge partition E;(BTS(m,n))

Figure 3. Melem chain (MC(4)).
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(dy,dy), (uv € E(G)) | Number of edges
(3,3) 4
(3,4) 4
(3,5) 2(m+n—2)
(3,6) m+n+4
(4,4) m+n—4
(4,6) 2(m+n—2)
(5,6) 3(m—+n-—2)
(6,6) 6(mn— (m+n)+1)

Table 1. Edge partition of boron triangular sheet BTS(m,n) based on degrees of end vertices of each
edge.

contains 4 edges uv, where deg(u) = 3 and deg(v) = 4. The third edge partition E3(BTS(m,n))
contains 2m + 2n — 4 edges uv, where deg(1) = 3 and deg(v) = 5. The fourth edge partition
E4(BTS(m,n)) contains m + n + 4 edges uv, where deg(u) = 3 and deg(v) = 6. The fifth edge
partition Es(BTS(m,n)) contains m + n — 4 edges uv, where deg(u) = deg(v) = 4. The sixth
edge partition E¢(BTS(m,n)) contains 2m + 2n — 4 edges uv, where deg(u) =4 and deg(v) =
6. The seventh edge partition E;(BTS(m,n)) contains 3m + 3n — 6 edges uv, where deg (1) =5
and deg(v) = 6 and the eighth edge partition Eg(BTS(m,n)) contains 6mn — 6m — 6n + 6
edges uv, where deg(u) = deg(v) = 6. Table 1 shows such an edge partition of BTS(m,n).
Thus from (3) it follows that

Ri(G) =}, (deg(u)-deg(v))".
uveE(G)

Now, we apply the formula of R, (G) for a =1
8
Ri(G)=)_ Y. deg(u)-deg(v).
J=1uveE;(G)

By using edge partition given in Table 1, we get

R1(G) = 9|E1(BTS(m,n))| + 12|Eo(BTS(m,n))| + 15|Es(BTS(m,n))| + 18|E4(BTS(m,n))]
+ 16|E5(BTS(m,n))| 4+ 24|E¢(BTS(m,n))| + 30|E7(BTS(m,n))| + 36|Eg(BTS(m,n))]
= —2(7m — 108mn +7(2 + n)).

N|—

We apply the formula of R, (G) for a =

8
RyG)=Y Y y/deg(u)-deg(v).
J=1uveE;(G)

N|—
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By using edge partition given in Table 1, we get

Ry (G) = 3|Ex(BTS(m,n))| +2v/3|Ea(BTS(m,n))| + V15|E3(BTS (m,n))|

+ 3V2|E4(BTS(m,n))| + 4|Es(BTS(m,n))| + 2v/6|E¢(BTS (m,n))|
+ \/30|E7(BTS(m,n))| + 6|Es(BTS (m,n))|

=12+ 8V3 +4(—4+m+n) + (4V6 +2v15 +3v30) (=2 + m + n)
+3V2(4+m~+n) —36(—1+m —mn+n).

N|—

We apply the formula of R, (G) for « = —1. Then we have

1

SIS o, deg (i) - deg(®)

J=luveE;(

= o Ex(BTS(m,m))| + 75| E2(BTS (m,m))| + 2z | Es(BTS (m,m)|
+ | E(BTS(m,n))| + 1 [Es(BTS(mm) | + o |Eg(BTS (m,n))
+ 55| E(BTS(m,m))| + o |Es(BTS (m,m))|

= 5 (204 + 193m + 120mn + 193n).

We apply the formula of Ry(G) for & = —3. Then we have

8 1
R4(6 ]Zl uve;] Vdeg(u) - deg(v)
= 2B (BTS(m1))| + Y2 E2(BTS (m10) + - [Ex(BTS (o)
V2 1 Ve

+ —|E4(BTS(m n))|+ Z|E5(BTS(m,n))| + ﬁ|E6(BTS(m,n))|
f|E7<BTs<m )| + ¢|Es(BTS(m,n))
60(8O+4O\/_+15( ~4+m+n)+ (10V6 +8V5+6V30)(—2 +m +n)
+10V2(4 4+ m +n) — 60(—1 +m — mn + n)).

In the following, we compute first Zagreb index of boron triangular sheet BTS(m,n).

Theorem 2.2. For boron triangular sheet G = B TS(m,n) form =n >3, We have
M1(BTS(m,n)) =2(—5+7m + 36mn + 7n).
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Proof. Let G be the boron triangular sheet BTS(m,n). By using edge partition from Table 1,
the result follows. From (4) we have

8
Mi(BTS(m,n)) = Y (deg(u)+ deg(v Z (deg(u) + deg(v))

uveE(G) J=luvek;
— 6|E1(BTS(m,n))| + 7|E2(BTS(m
+ 9|E4(BTS(m,n))| + 8| Es(BTS(m
+ 11|E7(BTS(m,n

(G)
)|+ 8|E3(BTS(m,n))|
)| 4+ 10|E¢(BTS (m,n))|
))| + 12|Eg(BTS(m,n))|.

,n)
1)

By doing some calculation, we get M1(BTS(m,n)) = 2(—5+ 7m + 36mn + 7n). O
Now, we compute ABC and GA indices of boron triangular sheet BTS(m,n).

Theorem 2.3. Let G = BTS(m,n) be the boron triangular sheet, for m = n > 3, then

1
ABC(G) = (160 + 40vV/15 + 15V6(—4 +m + n)

+ (40V/3 + 24V/10 4 18v/30) (=2 + m + n)
+10V14(4 + m + n) — 60vV/10(—1 4+ m — mn + n)),

1
GA(G) :6+76\/§—5m+6mn—5n
4 V15 6 2
+ (5\/€+ 5+ V30(=2+m+n) + 5\/5(4+m+n)).

Proof. By using edge partition given in Table 1, we get the result. From (5) it follows that

ABC(G) = MUGZE: ‘6 degdeg(Jr)dizig ]Z; uve; ©) degd(e?(;r) fif{izz}; &
= 2B (BTS ()| + ¥ Ea(BTS (1)) |+ YO Ea(BTS ()
+ VI E BT ()] + VO IES(BTS (n, )] + Y2 |Ea(BTS ()
Y301 BT ()| + Y20 B (BTS ()1

By doing some calculation, we get

ABC(G) = ! — (160 + 40V/15 + 15vV/6(—4 + m + n)

60
+ (40v/3 + 24V/10 4 18v/30) (=2 + m + n) + 10V 14(4 + m + n)
— 60vV10(—1+m — mn +n)),
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and from (6) we get

GA(C)= Y 2y/deg(u degv i y deg(u)deg(v)

B uveE(G) (deg( ) + d@g Z) ] 1MU€E] (deg( ) + deg(v)) .

Then we have

GA(G) = |E1(BTS(m,n))| + é\/§|E2(BTS(m,n))| - @|E3(BTS(m,n))|

+ 2VAIE(BTS(m,n))| +|Es(BTS (m,m))]| + 2V6|Eq(BTS (m,m)|
+ 2 V/B0[E(BTS (m,n))] + |Es(BTS (m,m)|.

By doing some calculation, we get
1
GA(G) :6—|—76\/§—5m—|—6mn—5n

_|_(Z_;\/E-F@—}—%\/%(—Z-}—m—l—n)+§\/§(4+m+n)).
[

Now, we compute ABC4 and GAs indices of boron triangular sheet BTS(m,n). Let us
consider an edge partition based on degree sum of neighbors of end vertices. Then the
edge set E(BTS(m,n)) can be divided into twenty four edge partitions E;(BTS(m,n)),9 <
j < 32, where the edge partition E9(BTS(m,n)) contains 4 edges uv with S, =13 and S, =
14, the edge partition E1o(BTS(m,n)) contains 4 edges uv with S, = 13 and S, = 19, the
edge partition E11(BTS(m,n)) contains 4 edges uv with S, = 13 and S, = 27, the edge par-
tition E1p(BTS(m,n)) contains 4 edges uv with S, = 14 and S, = 24, the edge partition
Ei3(BTS(m,n)) contains 4 edges uv with S, = 14 and S, = 27, the edge partition
E14(BTS(m,n)) contains 2m + 2n — 8 edges uv with S, = 16 and S, = 24, the edge partition
Ei5(BTS(m,n)) contains m + n — 4 edges uv with S, = 16 and S, = 31, E1,(BTS(m,n)) con-
tains 4 edges uv with S, =19 and S, = 20, E17(BTS(m,n)) contains 4 edges uv with S, = 19
and S, = 27, E1g(BTS(m,n)) contains 4 edges uv with S, =19 and S, = 32, E;9(BTS(m,n))
contains m + n — 8 edges uv with S, = S, = 20, Exo(BTS(m,n)) contains 2m + 2n — 12 edges
uv with S, =20 and S, = 32, E»1(BTS(m,n)) contains 4 edges uv with S, =24 and S, =27,
Ex(BTS(m,n)) contains 2m + 2n — 8 edges uv with S, =24 and S, = 31, Ex3(BTS(m,n))
contains m + n — 2 edges uv with S, =24 and S, = 35, Ex4(BTS(m,n)) contains 4 edges uv
with S, = 27 and S, = 32, Ex5(BTS(m,n)) contains 4 edges uv with S, = 27 and S, = 35,
Exs(BTS(m,n)) contains 2m + 2n — 8 edges uv with S, = 31 and S, = 35, Exy(BTS(m,n))
contains m + n — 4 edges uv with S, =31 and S, = 36, Ex3(BTS(m,n)) contains m +n — 6
edges uv with S, = S, = 32, Ex9(BTS(m,n)) contains 4 edges uv with S, = 32 and S, = 35,
E3o(BTS(m,n)) contains 2m + 2n — 12 edges uv with S, = 32 and S, = 36, E31(BTS(m,n))
contains 3m + 3n — 10 edges uv with S, = 35 and S, = 36 and E3(BTS(m,n)) contains
6mn — 15m — 15n 4 34 edges uv with S;, = S, = 36.
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Theorem 2.4. Let G = BTS(m,n) be the boron triangular sheet, for m =n > 5, then

- B3 G

3\/_ \/7 \/_ 3\/_ 18\/7(34 15m 4 6mn — 15n)
+ 75 1 19( 8+ m+n )+(i\/>+ V5 + 31)( 6+ m+n)

2

+ \/\ \/f \/7 \/> \/m (—4+m+n)

1 23
- 2 1
+3y 70( +m )+2 105 (10 +3m +3n),
48 96 16 32 3 24
GAs(G) =20+ V2 + @\f6+ 19V2L+ Va8 + V39 + VR
12 32 16 12 8 1
+ 53 V57 + V70 + 25 V05 + STV105 + V182 + 1v/247
24 8
— 13m + 6mn — 13n + (o V2 + - V10) (=6 + m + n)
7 13
4 1100 2
+(=V6+ V31 + 5 \/186+—\/1085)(—4+m+n)
5 3149 33
4 12
+ 5—9\/210(—2 +m+ n) + ﬁ\/35(—10 + 3m +3n).

Proof. By using edge partition given in Table 2, we get the result. From (7) it follows that

[Su+S0—2 /Sy
ABCy4(G
quE S So j= 9uveE Sus

:Ewg(msmnw g|Em<BTs<m,n>>|+§\/§EH<BTs<m,n>>|
V2L BT ()| + 2 By (BTS (1)) + o |Eva (BTS (,0)
\/7|E15BTSmn N+ = \/>|E16BTSmn N+ = \/>|E178T5mn)|
+ s B (BTS ()| + G5 V38 o (BTS (n, )] + 2| En (BTS (1))
+%xfzwm(mswnm+§\/1%|Ezz<ms<m,n>>|+§\/%|E23<BTs<m,n>>|
38 (BTS ()| + 27 Ean(BTS ()| + e Exs(BTS (1))

L (BT, 0) -+ 2 s (BTS ()| + A2 g (BT )

47



Alietal. /Journal of Discrete Mathematics and Its Applications 7 (2022) 39-61

+ \g—?—f|E3O(BTS(m,n))| + %\/§|E31(3T5(m,n))| + §|E32(BTS(m,n))|.

Thus, we have

i

+F+ \/_ 3\/_ \/7(34—15m+6mn—15n)
+ 15 1 19( 8+ m+n )+(1\/>+ V5 + 21)( 6+ m+n)

+<[ Vgt i 2+ 2 aeman)
+2\/7>0( 24+m+n )+2 12035( 10 + 3m + 3n).

From (8) we get

3 2v/5455 _i ¥ 2v/54Sy

GAs(G) = wiEic) St 50)  Sudiie) Sut o)
Then,

GAs(G) —z@wm )| +1i/6_47|Elo(BT5( n))| +3@|E11<BTS<M n))l
+4@|512(BT5( n))| +6m\E13(BTS(m n))| +2\/?€|E14(BT5(m n))|
n 8@|1515(BT5(m n))| -|-4\/%|E16(BTS( n))| +3\/5_7|E17(BTS(m n))|
4 8@|E18(BT5(TH n))| + |E1o(BTS(m,n))| +4\/—|E20(BT5(W1 n))|
+ 12£|E21(BTS( n))| +4g\Ezz(3TS( n)))| +4£|E23(BT5(’” n))|
+ z4ﬁ|E24<BTs<m )]+ 3108 s (BT ) + mw%(BTS(m )
+ 12‘2—?;—1]E27(BTS(m,n))I + |Eas(BTS(m,n))| +8\/—!EZ9(BT5(’” )l

V2 V35

+ 12W|E30(BT5(TH,1’1))’ + 127|E31(BTS(WZ,1’Z))| + |E32(BTS(1’Y1,1’[))|

48
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Thus, we have
48 96 16 32 3 24 12 — 32 —
GAS(C) =20+ 172 + 56+ 1gV2L+ 57 V38 + 5V39 & 47 Va2 53 V7 + (V70
1 12 8 1
+ 3 V9B V105 + o V182 + VA7 — 13m -+ 6mn — 13n
24 8
+ (V2 + 5 V10) (=6 +m +n)

+(§f ;128\/——1- V186 + 22 W)(—4+m+n)

4
+ @\/210(—2 +m+n)+ ﬂ\/35(—10 + 3m + 3n).

]

Chemical engineers have determined that a unique arrangement of 36 boron-atoms in a
flat disc with a hexagonal hole in the middle may be preferred building blocks for borophene.
A 36-atom cluster of boron, left, arranged as a flat disc with a hexagonal hole in the middle,
fix the theoretical requirements for making a one-atom-thick boron chain, right, a theoretical
nanomaterial dubbed borophene. A borophene chain Bss(n) for n > 2 has order 32n + 4 and
size 81n + 3.

Now, we calculate certain degree based topological indices of borophene chain Bz (1) of
dimension n. In the coming theorems we compute general Randi¢ index R, (G) with a =
{1,-1,3,—3}, ABC, GA, ABC4 and GAs of Bse(n).

Theorem 2.5. Consider the borophene chain Bsg(n) for n > 2. Then

(6(—32+373n), a=1;
8+ 8/5(—1+n) +46n + (6v/2+8v3)(2+n)+
161/6(1 4 2n) 4+ 64/30(—1 + 4n) + 18(—3 + 7n),
18% (1255 4 5732n),

35(—30 4+ 20v/2 4+ 40v/3 — 124/5 4+ 20/6 — 64/30+
(171+10\F+20\f+12f+4of+24\/_) ), o= —1.

1.

27

R(Bso(n)) = )

Proof. Let G be the borophene chanin Bz (7). The borophene chain Bsg (1) has 2n + 4 vertices
of degree 3, 8n + 4 vertices of degree 4, 8n — 2 vertices of degree 5 and 14n — 2 vertices
of degree 6. The edge set of Bss(n) is divided into eight partitions based on the degree of
end vertices. The first edge partition Eq(Bsg(n)) contains 4n + 8 edges uv, where deg(u) =
3 and deg(v) = 4. The second edge partition E»(Bss(n)) contains 2n + 4 edges uv, where
deg(u) = 3 and deg(v) = 6. The third edge partition E3(Bss(n)) contains 4n + 2 edges uv,
where deg(u) = deg(v) = 4. The forth edge partition E4(Bsg(n)) contains 4n — 4 edges uv,
where deg(u) =4 and deg(v) = 5. The fifth edge partition Es(Bzs (7)) contains 161 + 8 edges
uv, where deg(u) = 4 and deg(v) = 6. The sixth edge partition E¢(Bsg(n)) contains 61 edges
uv, where deg (1) = deg(v) = 5. The seventh edge partition E;(Bsg (1)) contains 24n — 6 edges
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(Su,Sv), uv € E(G) | Number of edges | (S,,Sy), uv € E(G) Number of edges
(13,14) 4 (24,27) 4
(13,19) 4 (24,31) 2m+2n—38
(13,27) 4 (24,35) m+n—2
(14,24) 4 (27,32) 4
(14,27) 4 (27,35) 4
(16,24) 2m+2n—8 (31,35) 2m+2n—8
(16,31) m+n—4 (31,36) m+n—4
(19,20) 4 (32,32) m+n—=6
(19,27) 4 (32,35) 4
(19,32) 4 (32,36) 2m+2n —12
(20,20) m+n—38 (35,36) 3m + 3n — 10
(20,32) 2m+2n —12 (36,36) 6mn — 15(m +n) + 34
Table 2. Edge partition of boron triangular sheet BTS(m,n) based on degrees sum of end vertices of
each edge.
(dy,dy), uv € E(G) | Number of edges

(3,4) 4n + 8

(3,6) 2n+4

(4,4) 4dn + 2

(4,5) dn — 4

(4,6) 16n + 8

(5,5) 6n

(5,6) 24n — 6

(6,6) 21n -9

Table 3. Edge partition of borophene chain Bss (1) based on degrees of end vertices of each edge.

uv, where deg(u) =5 and deg(v) = 6. The eight edge partition Eg(Bss(n)) contains 21n — 9
edges uv, where deg(u) = deg(v) = 6. Table 3 shows such an edge partition of Bss(n). Thus
from (3) is follows that

Ry(G)= '}, (deg(u)deg(v))".

uveE(G)
Now we apply the formula of R,(G) fora =1

8
=) ) deg(u)-deg(v).
J=1uveE;(G)
By using edge partition given in Table 3, we get
R1(G) = 12|E1(Bsg(n))| + 18|Ea(Bss(1) )| + 16|E3(Bag(1) )| + 20| E4(Bas(1))]
+ 24|E5(Bse(n))| + 25|E6(Bss(1))| + 30|E7(Bse(1))| + 36|Eg(Bse (1)) |-
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Then R;(G) = 6(—32 + 373n). We apply the formula of R, (G) fora = 1

8
R%(G :]Z \/deg ) -deg(v

TuveE;(
By using edge partition given in Table 3, we get
Ry (G) = 2V/3|E1(Bss(n))| +3v/2|Ea(Bas(1))| + 4|E3(Bas(n))| +2v/5|Ea(Bss(n)))|
+2V/6|Es(Ba(1))| + 5| Eq(Bas (1)) + v/30|E7(Bs (1)) | + 6| Es (Bs (1)) |-

N\H

Then

Ri(G) =8+ 8V5(—1+n) +46n + (6v/2 +8v3) (2 + 1) + 16V6(1 + 2n)

+6v30(—1+ 4n) +18(=3 + 7n).

NI—

We apply the formula of Ry (G) for a = —1

8
1
N ]:Zl uve%(G) deg(u) - deg(v)’

We have
R_1(G) = 5 E1(Bss(n))] + 75| Ea(Bso ()| + 2| Es(Bo(m))] + | Es (Bso(n))

4 o |Es(Bss(m)]| + 5 Eo(Bao(m))] + 55| E7 (Bso ()| + 5 |Es(Bss(n))
1

= Tag (1255 +5732n).

N—

We apply the formula of Ry (G) for a = —

-y ¥

j= 1uveE V/deg deg )

N\»—\

Thus

(G) = \/?E|E1(B36(”))| + g|52(336(”))| + %|Es(336(”))| + \1/—05|E4(B36(”))|

G

8 By (Bas(n)) -+ & [Es(Bas ()| + 20 B (Bao()] + 2| Es(Bao())
=550 30 4 20v/2 4 40v/3 — 121/5 + 20v/6 — 61/30
+ (171 + 10v/2 + 20v/3 + 12/3 + 40v/6 + 24+/30)n).

R

1
2
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In the following theorem, we compute first Zagreb index of borophene chain Bzs(n).
Theorem 2.6. For borophene chain G = Bsg(n) for n > 2. Then
M (Bzg(n)) = —22 4 850n.

Proof. Let G be the borophene chain Bsg (7). By using edge partition from Table 3, the result
follows. From (4) we have

8
Mi(Bss(n)) =}, (deg(u)+deg(v)) =} (deg(u) + deg(v)).
uveE(G) J=1uveE;(G)

Then we have

M (Bss(n)) = 7|E1(Bsg(n))| 4 9|E2(Bss(n))| + 8| E3(Bzg(n))| + 9|E4(Bss(n))|
+ 10|E5(Bag(1))| + 10|E6(Bag(1))| + 11|E7(Bag(1))| + 12|Es(Bas(1))]-

By doing some calculation, we get M1 (Bsg(n)) = —22 + 850n. O
Now, we compute ABC and GA indices of borophene chain Bsg(n).

Theorem 2.7. Let G == Bsg(n) be the borophene chain, for n > 2, then

ABC(G) = 61—0(24@(—1 + 1) + 144v2n + (20v/14 + 40V/15) (2 + n)

+ (160v/3 +30vV/6) (1 +2n) + 36v/30(—1 + 4n) 4+ 30v/10(—3 + 7n)),

GA(G) = -7+ %6%(—1 1) +31n + (48ﬁ;28ﬁ)(2 +n)

16 12
+3 —V6(142n )+ﬁ\/%(—1+4n).

Proof. By using edge partition given in Table 3, we get the result. From (5) it follows that

ABC(G) = Z deg(u) +deg(v) —2 i Z deg(u)+deg(v)—2.

E\ s aeso T, B\ st deso
Then, we have
ABC(G) = Y2y (Bag(m)| + YL Ea(Basn)) | + Y2 |Ex(Bag()
Y By By )|+ 2 s (Bso0) | + 22 BB )|
0 )+ Y20 g B
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By doing some calculation, we get

ABC(G) = (24¢_( 1+ n) + 144v2n + (20V/14 + 40V/15) (2 + n)
(160\/_+ 30v/6) (14 2n) +36V/30(—1 + 4n) 4+ 30v/10(—3 + 7n)).

From (6) we get

_ 2/deg()deg(v) & deg (u)deg(v)
GA(G) N uUEZE(G) (deg(u) + deg U ; ; (deg( ) + deg(v)) |

By doing some calculation, we get

GA(G) = 4\/7§|E1(B36(”))| +2§|E2(B36(n))| + |E3(Bse(n))| +4\/75|E4(B36(ﬂ))|
V6 \/—

+ 2?|E5(B36(”))| + [E¢(Bss(1))] +2—=— |E7(B36( )|+ [Es(Bas(1))]-

We have

GA(G) = —7+ 19—66(—1 tn) 4310 + (48ﬁ;28ﬁ)(2 +n)

16 12
+ 3 —V6(1+2n )+ﬁ\/%(—1+4n).

]

Now, we compute ABCy and GAs indices of borophene chain Bsg (7). Let us consider an
edge partition based on degree sum of neighbors of end vertices. Then the edge set E(Bsg(n))
can be divided into twenty four edge partitions E;(Bss(1)),9 < j < 28, where the edge par-
tition Eg(Bsg(n)) contains 4n + 8 edges uv with S, = 14 and S, = 19, the edge partition
E19(Bss(n)) contains 2n + 4 edges uv with S, = 14 and S, = 28, the edge partition E11(Bss (1))
contains 6 edges uv with S, = S, = 19, the edge partition E1»(Bsg(n)) contains 4n — 4 edges
uv with S, = 19 and S, = 20, the edge partition E13(B3g(1)) contains 4n + 8 edges uv with
Sy =19 and S, = 28, the edge partition E14(B3s (1)) contains 41 + 8 edges uv with S, =19 and
Sy = 30, the edge partition E15(Bss(n)) contains 4n — 4 edges uv with S, =20 and S, = 26,
E16(B3g(n)) contains 4n — 4 edges uv with S, =20 and S, = 30, E17(B3s(n)) contains 4n — 4
edges uv with S, =20 and S, = 31, E1g(Bss(n)) contains 4n — 4 edges uv with S, = 26 and
Sy =31, E19(Bsg(n)) contains 2n — 2 edges uv with S, = 26 and S, = 35, Exo(Bss(1)) contains
8n + 4 edges uv with S, = S, = 28, Ep1 (B3 (1)) contains 121 + 12 edges uv with S, = 28 and
So =30, Exp(Bss(n)) contains 4n — 4 edges uv with S, =28 and S, = 31, Ex3(Bss(n)) contains
4n — 4 edges uv with S, =28 and S, = 34, Ep4(Bsg(n)) contains 4n — 4 edges uv with S, = 30
and S, = 31, Ex5(Bse(n)) contains 4n — 4 edges uv with S, =31 and S, = 34, Ex¢(Bse(n)) con-
tains 4n — 4 edges uv with S, = 31 and S, = 35, Ey7(Bss(n)) contains 4n — 4 edges uv with
Sy =34 and S, = 35 and Exg(B3s(1)) contains n — 1 edges uv with S, = S, = 35.
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Theorem 2.8. Let G == Bsg(n) be the borophene chain, for n > 2, then

36 14 134 118 /118
AB =2 —— 42 2 +24/ 2 \/ ,/
C(6) =15+ 6\ 537 595 © 11 465 45 21

110 22 37 4
+2\ 3 T2 T2 s T3V2 5 \/_+
403 65 95 \/F \/ﬁ)

94 62

+4\[1+n )+ ( \/13 +2\/28 +2\/ 133+ 5 f )(24n)+ = \/—(1—|-2n)

16 16 16

GAs(G) =9+ (g\/€+ @\/%Jr ﬁ\/130+ o V155 + 55 V217 + ﬁ\/238+ 5\/806
+ 64—1\/910 + %\/930 + ﬁ\/1054 + i\/1085 + %\/1190)(—1 +1)+9n

24 16 16
+ 55 V210(1 + 1) + (5 f+47\/133+ \/266+E\/57O)(2+n).

Proof. By using edge partition given in Table 4, we get the result. From (7) it follows that

_|_

3 Sut+Sp—2 & Su+Sy—2

ABC4(G) = 5.5, 5.5,

uveE(G) J=9uveE;j(G)

Then, we have

ABCY(G) = \/ 3o Eo (Bss(n)]| + 7Bl Exo(Bao(m)| + 151 Ert (B (n))

+ ; /%|E13(B36(7’1))| + w/570|E14(B36( n))| 44/ %|E14(B36(n))|

+ 3V2IEs(Bas()| + 5 Evr(Bas(n)| + g Ess (Bao)
V15

+ %“519(336(”)” + ;_8\/6|E20(B36(”))| - F|E21(B36(n))|

1

57 15 59
t5 —|E22(B36(”))|+ @|Eza(336(”))\+ %’EM(B%(”)N

+3)/ Ty s Bas(1)] + el Exs(Bas(1)) | + 151 Exr(Baol)

+ ﬁmlEzs(B%(n))l + %\/;ZglEu(B%(”)N-

Thus, we have

[14 [134 18 /118 /110
ABC4(G 19+( 527 "%\ 59 +2\/119+2\/465 \/ﬁ+2\/217+2 403
2,
+2 \/ T2 f+ \/_+ \[Hn
65 \/15 \/108 )y

+ (6\/%+2\/%+2\/%+ ;\@)(2+ n) + ;\/8(1 +2n),
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(Su,Sv), uv € E(G) | Number of edges | (S,,Sy), uv € E(G) | Number of edges
(14,19) in+8 (26,35) 21— 2
(14,28) 2n+4 (28,28) 8n+4
(19,19) 6 (28,30) 12n + 12
(19,20) in—4 (28,31) in—4
(19,28) in+8 (28,34) dn—4
(19,30) in+8 (30,31) an—4
(20,26) in—4 (31,34) in—4
(20,30) an—4 (31,35) in—4
(20,31) in—4 (34,35) in—4
(26,31) an—4 (35,35) n—1

Table 4. Edge partition of borophene chain Bss (1) based on degrees sum of end vertices of each edge.

and from (8) we get

y oSy p M

CAs(G)= L 5,75, o Gut S

uveE(G) J=9uveE(

Then, we have
2 2
GAs(G) = @V266\E9(336(”))| + 5\/§|510(B36("))| + |E11(B3g(n))]
4 4 4
+ @\/%‘Elz(BQ%(H)H + E \% 133|E13(B36(1’l))| + E Vv 570]E14(B36(n))|
2 2 4
+ 5 V130 Exs(Bss(1))| + £ V6| Exg(Bas(n))| + 57 V15| Exy (Bas ()|
2 2
+ 57 V806|Eis(Bae(1))| + = VO10|Er9(Bse(n))| + | Exo(Bse (1) )|
2 4 2
+ 5g V210[E21(Bss (1)) + 25 V214 E22(Bas (1)) | + 37V 238|Exs(Bas (1))
2 2 1
+ g VI930IE24(Bae (1)) + -z V1054 Eps(Bas (1)) | + 75 V1085| E6(Bas (1))
2
t 59V 1190|Ez7(Bs(1))| + |E2s(Bse(1))|
— 9+ 36+ 2o+ 8 30+ s+ L0va17 4 B s+ 2 /806
B 5 39 23 51 59 31 57
4 4
+ V910 + 6%\/930 + %\/1054 + 53 V1085 + %\/1190)(—1 + 1) +9n
24 4 16 8 16
+ V2101 4 1) + (V2 4 =133 + —=1/266 4+ ——+/570) (2 + n).
29 3 47 33 49
[

The melem (2, 5, 8-triamino-tri-s-triazine) C¢Ny(NHj)3 chain nanotube. The melem was
obtained as a crystalline powder by thermal treatment of different less condensed C — N — H
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compounds (e.g., melamine C3N3(NHy)3, dicyandiamide Hy;C;Ng, ammonium dicyanamide
NH4[N(CN);], or cyanamide H,CNj,, respectively) at temperatures up to 450°C in sealed
glass ampules. The vertices and edges in melem chain are 18n + 4 and 21n + 3 respectively.

Now we compute Randi¢ R, (G) witha = {1, -1, %, —%}, ABC,GA, ABC4 and GAs indices
for melem chain MC(n) nanotube.

Theorem 2.9. Consider the melem chain MC(n) for n € N. Then

1351 49, a=1;
36n-|—4\/6n+\/§1—|—n ,zle;
Ry (MC(n)) = 1(+n_n ( ))a:il.
V3+(2+V3+2v6)n,  a=-1i

Proof. Let G be the melem chain. The melem chain MC(n) has 3n + 3 vertices of degree 1, 6n
vertices of degree 2, and 91 + 1 vertices of degree 3. The edge set of MC(n) is divided into
three partitions based on the degree of end vertices. The first edge partition E;(MC(n))
contains 3n + 3 edges uv, where deg(u) = 1 and deg(v) = 3. The second edge partition
E;(MC(n)) contains 12n edges uv, where deg(u) = 2 and deg(v) = 3. The third edge par-
tition E3(MC(n)) contains 6n edges uv, where deg(u) = deg(v) = 3. Table 5 shows such an
edge partition of MC(n). Thus from (3) is follows that

Ra(G)= ) (deg(u)deg(v))".
uveE(G)

Now we apply the formula of R, (G) fora =1
3
Ri(G)=)_ Y deg(u)deg(v).
J=1uveE;(G)
By using edge partition given in Table 5, we get
R1(G) =3|E1(MC(n))| + 6|E2(MC(n))| +9|E3(MC(n))| = 1351 + 9.

We apply the formula of R, (G) for a = %

By using edge partition given in Table 5, we get

R1(G) = V3|E((MC(n))| + V6| E2(MC(n))| + 3| E3(MC(n))]

= 3(6n +4vV6n +V3(1+n)).

NI—
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(du,dy), uv € E(G) | Number of edges
(1,3) 31 +3
(2,3) 121
(3,3) 61

Table 5. Edge partition of melem chain MC(n) based on degrees of end vertices of each edge.

We apply the formula of Ry (G) for a = —1

1

S o, deg () - deg(®)

J=luveE;(

= LB (MC () + 2 [Ea(MC ()| + 3 [Ex(Mc(m)

11n
=14+ —.
* 3

We apply the formula of R, (G) for a = —%
> 1
- j=luveE;(G) Vdeg(u) - deg(v)

(MC(n))| + 5 |E5(MC(n)|

L g
\/6 2
=V3+(2+V3+2V6)n.

In the following theorem, we compute first Zagreb index of melem chain MC(n).
Theorem 2.10. For melem chain G = MC(n) for n € IN. Then
M;(MC(n)) =12(1+9n).

Proof. Let G be the borophene chain Bsg(1). By using edge partition from Table 5, the result
follows. From (4) we have

M(MC(n)) = ) (deg(u) +deg(v))
quE(G)

= Z Y. (deg(u)+ deg(v))
J=1uveE;(G)
= 4[E1(MC(n))| + 5| E2(MC(n))| + 6|E3(MC(n))|.
By doing some calculation, we get M1 (MC(n)) =12(1 + 9n). O
Now, we compute ABC and GA indices of melem chain MC(n).
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Theorem 2.11. Let G = MC(n) be the melem chain, for n € N, then

ABC(G) = V6 + (4 +6V2 +V6)n,

GA(G) = 61+ 245%;1 + 3‘26(1 1),

Proof. By using edge partition given in Table 5, we get the result. From (5) it follows that

B deg(u) + deg(v) —
ABC(G)—WGZE: deg (i) - deg(v)

deg(u) + deg(0) —
- ]Zl we; G deg(u) - deg(v)

:@amc:(n))u S EA(MC(n )] + 21 E5(MC(n)].

By doing some calculation, we get ABC(G) = v/6 + (4 + 61/2 + 1/6)n, from (6) we get

B 2\/deg(u)deg(v) 3 deg(u)deg(v)
CAOI= b Tdeglu) + des(e) X, 2 et + des )
By doing some calculation, we get
GA(G) = \/7§|E1(MC(H))I + ilEz(MC( NI+ |E3s(MC(n))|,
24v/6 33

=6n+ G n-+ > (1+n).

Now, we compute ABC,; and GA5 indices of melem chain MC(n). Let us consider an edge
partition based on degree sum of neighbors of end vertices. Then the edge set E(MC(n)) can
be divided into six edge partitions E;(MC(n)),4 < j <9, where the edge partition E4(MC(n))
contains 2n + 4 edges uv with S, =3 and S, = 5, the edge partition E5(MC(n)) contains n — 1
edges uv with S, =3 and S, =7, the edge partition Eq(MC(n)) contains n + 2 edges uv with
Sy =5and S, =7, the edge partition E;(MC(n)) contains 12n edges uv with S, = 6 and
Sy, =7, the edge partition Eg(MC(n)) contains 2n — 2 edges uv with S, = S, =7 and the edge

partition Eg(MC(n)) contains 3n edges uv with S, =7 and S, =9.
Theorem 2.12. Let G = MC(n) be the melem chain, for n > 2, then

ABC4(G) = (2\/%+ 4?)(—1 +n)+ (\/§+2\/6>—6 n+ ( \/g+2\/g)(2+n),
V7

GAS(G):—2+%\/i(—1+n)+(2+9 24v/42

s T3 "
+(%\/ﬁ+%\/ﬁ)(z+n).

58



Alietal. /Journal of Discrete Mathematics and Its Applications 7 (2022) 39-61

(Su,Sv), uv € E(G) | Number of edges
(3,5) 2n+4
(3,7) n—1
(5,7) n—+2
6,7) 12n
(7,7) 2n —2
(7,9) 3n

Table 6. Edge partition of Melem chain MC(n) based on degrees sum of end vertices of each edge.

Proof. By using edge partition given in Table 6, we get the result. From (7) it follows that

Su+Sp—2 < Su+Sp—2

ABC4(G) = 5.5, 5.5,

uveE(G) j=4uveE;(G)

2 2¢/2 2
= \@|E4(Mc(n))l + E|E5(MC(”))| + \@I&(MC(”)H
+ \/%|E7(Mc(n))| + %ES(MC(”)” + g\EﬂMC(”))

|
:(2\/%+¥)( )+ (\/_+2\/j)n+(\/g+2\/g)(2+”)/

and from (8) we get

B 2v/S,S, EJ 25,5,
GAs(G) = MUEZE(G) (Su +So) ]24”0@] (Su+So)
_ @|E4(MC(n))| + §|E5(MC(n))| + @|E6(MC(”))|
2\/_ V63

5 | E7(MC(n))| + |Es(MC(n))| + —=[Eo(MC(n))|

:—2+§\/ﬁ(—1+n)+(2+9;ﬁ 241\2_) (\/_5+ \/_)(Z—I—n)

3 Conclusion

In this paper, certain degree based topological indices, namely general Randi¢ index,
atomic-bond connectivity index (ABC), geometric-arithmetic index (GA) and first Zagreb
index for boron triangular sheet BTS(m,n), borophene chain of Bss(n) and melem chain
MC(n) were studied for the first time and analytical closed formulas for these nanostructure
were determined which will help the people working in chemical science to understand and
explore the underlying topologies of these nanostructures.
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