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On the edge energy of some specific graphs
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Abstract. Let G = (V, E) be a simple graph. The energy of G is the sum of absolute values of the
eigenvalues of its adjacency matrix A(G). In this paper we consider the edge energy of G (or energy
of line of G) which is defined as the absolute values of eigenvalues of edge adjacency matrix of G. We
study the edge energy of specific graphs.
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1 Introduction

In this paper, we are concerned with simple finite graphs, without directed, multiple,
or weighted edges, and without self-loops. Let G be such a graph, with vertex set V(G) =

{v1,v2, . . . ,vn}. Let A(G) be the (0,1)-adjacency matrix of graph G. The characteristic poly-
nomial of G is det(A(G) − λI) and is denoted by PG(λ). The roots of PG(λ) are called the
adjacency eigenvalues of G and since A(G) is real and symmetric, the eigenvalues are real
numbers. If G has n vertices, then it has n eigenvalues and we denote its eigenvalues in
descending order λ1 ≥ λ2 ≥ · · · ≥ λn. Let λ1,λ2, ...,λs be the distinct eigenvalues of G with
multiplicity m1,m2, ...,ms, respectively. The multiset Spec(G) = {(λ1)

m1 , (λ2)
m2 , ..., (λs)ms} of

eigenvalues of A(G) is called the adjacency spectrum of G. The energy E(G) of the graph G
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is defined as the sum of the absolute values of its eigenvalues

E(G) =
n

∑
i=1

|λi|.

Details and more information on graph energy can be found in [11, 15–17, 23, 24]. There
are many kinds of graph energies, such as incidence energy [3, 5], Laplacian energy [10],
matching energy [8, 19, 20] and Randić energy [2, 4, 22].

The line graph of G is denoted by L(G), the basic properties of line graphs are found
in textbooks, e.g., in [18]. The iterated line graphs of G are then defined recursively as
L2(G) = L(L(G)), L3(G) = L(L2(G)), ..., Lk(G) = L(Lk−1(G)). The basic properties of iterated
line graph sequences are summarized in the articles [6, 7]. Authors in [21] have shown that,
if G is a regular graph of order n and of degree r ≥ 3, then for each k ≥ 2, E(Lk(G)) depends
solely on n and r. In particular, E(L2(G)) = 2nr(r − 2). In [14] authors has established rela-
tions between the energy of the line graph of a graph G and the energies associated with the
Laplacian and signless Laplacian matrices of G.

In this paper we consider the edge energy of a graph (energy of line graph) and compute
it for some specific graphs.

2 Main results

In this section we consider the edge energy of a graph (or the energy of the line of a graph)
and obtain some of its properties. First we recall the definition of the edge adjacency matrix
of a graph. Note that the edge adjacency energy of a graph is just the ordinary energy of the
line graph and has studied in detail. For instance see [14, 21].

Definition 1. Let G be a connected graph with edge set {e1, . . . , em}. The edge adjacency
matrix of G is defined as a square matrix Ae = Ae(G) = [aij] where aij = 0 if i = j or ei and ej
are not adjacent, and aij = 1 if edges ei and ej are adjacent.

This matrix is symmetric and all its eigenvalues are real. The edge characteristic polyno-
mial of G is ϕe(x) = det(Ae − xI).

Definition 2. The edge energy of a graph G is denoted by Ee(G) and defined as

Ee(G) =
m

∑
i=1

|µi|,

where µ1, . . . ,µm are eigenvalues of Ae(G).

Here we are interested to obtain edge energy of some specific graphs. First we consider
star graphs K1,n.

Theorem 2.1. For every natural n, Ee(K1,n) = E(Kn).
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Proof. We know that the star graph K1,n has n edges. All its edges are adjacent in a vertex
(center). The edge adjacency matrix of this graph is

Ae(K1,n) =


0 1 · · · 1
1 0 · · · 1
...

... . . . ...
1 1 · · · 0

 = J − I,

where J is a square matrix whose all its arrays are 1, and I is identity matrix. The eigenvalues
of this matrix are the eigenvalues of adjacency matrix of Kn (see [9]). Therefore Ee(K1,n) =

E(Kn).

Theorem 2.2. For every natural n, Ee(Pn) = E(Pn−1).

Proof. The graph path with n vertices, has n − 1 edges and no cycles. Its edge adjacency
matrix is

Ae(Pn) =



0 1 0 0 · · · 0 0 0
1 0 1 0 · · · 0 0 0
0 1 0 1 · · · 0 0 0
...

...
...

... . . . ...
...

...
0 0 0 0 · · · 1 0 1
0 0 0 0 · · · 0 1 0


.

This matrix is exactly the adjacency matrix of Pn−1 (see [9]). Therefore we have the result.

Theorem 2.3. For every natural n ≥ 3, Ee(Cn) = E(Cn).

Proof. The graph cycle with n vertices, has n edges. Its edge adjacency matrix is

Ae(Cn) =



0 1 0 0 · · · 0 0 1
1 0 1 0 · · · 0 0 0
0 1 0 1 · · · 0 0 0
...

...
...

... . . . ...
...

...
0 0 0 0 · · · 1 0 1
1 0 0 0 · · · 0 1 0


.

This matrix is exactly the adjacency matrix of Cn ( [9]) and so we have the result.
Now we shall obtain the edge energy of some another graphs. Here we investigate the

complete bipartite graphs Km,n.

Lemma 2.4. (i) The edge characteristic polynomial of Km,n is

(x + 2)(m−1)(n−1)(x − (m + n − 2))(x + 2 − n)m−1(x + 2 − m)n−1.

(ii) Ee(Km,n) = 4(m − 1)(n − 1).
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Proof. (i) We can see that the edge adjacency matrix of Km,n is mn × mn matrix

Ae(Km,n) =


Jn − In In In · · · In

In Jn − In In · · · In
...

...
...

...
In In In · · · Jn − In

 .

With simple computation,

ϕe(x) = det(Ae(Km,n)− xI)

= (x + 2)(m−1)(n−1)(x − (m + n − 2))(x + 2 − n)m−1(x + 2 − m)n−1.

(ii) It follows from Part (i).

Now, we consider two families of graphs and obtain their edge energy. The friendship
(or Dutch-Windmill) graph Fn is a graph that can be constructed by coalescence n copies
of the cycle graph C3 of length 3 with a common vertex. The Friendship theorem of Paul
Erdös, Alfred Rényi and Vera T. Sós [12], states that graphs with the property that every two
vertices have exactly one neighbour in common are exactly the friendship graphs. The Figure
1. shows some examples of friendship graphs. Let to obtain the energy of Fn. First we need

Figure 1. Friendship graphs F2, F3, F4 and Fn, respectively.

the following theorem:

Theorem 2.5. [1]

(i) The characteristic polynomial of Fn is

PFn(x) = (x + 1)(x2 − 1)n−1(x2 − x − 2n).

(ii) The spectrum of friendship graph Fn is

Spec(Fn) =
{
(

1
2
− 1

2

√
1 + 8n)1, (−1)n, (1)n−1, (

1
2
+

1
2

√
1 + 8n)1

}
.

The following corollary is an immediate consequence of Theorem 2.5:

Corollary 2.6. The energy of friendship graph Fn is

E(Fn) =
√

1 + 8n + 2n − 1.
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To obtain the edge energy of friendship graphs, we consider two following matrices:

A =

0 1 1
1 0 1
1 1 0


and

B =

1 0 1
0 0 0
1 0 1

 .

It is easy to see that the edge adjacency matrix of Fn is 3n × 3n matrix in the following
lemma:

Lemma 2.7. The edge adjacency matrix of friendship graph Fn is

Ae(Fn) =


A B B · · · B
B A B · · · B
...

...
... . . . ...

B B B · · · A

 .

Theorem 2.8. (i) The edge characteristic polynomial of Fn is

(x2 − (2n − 1)x − 2)(x − 1)n−1(x + 2)n−1(x + 1)n.

(ii) The edge energy of friendship graphs is Ee(Fn) = 4n − 3 +
√
(2n − 1)2 + 8.

Proof. (i) Using Lemma 2.7 and simple computation we have the result.

(ii) It follows from Part (i).

Let us to consider book graphs. The n-book graph Bn can be constructed by joining n
copies of the cycle graph C4 with a common edge {u,v}, see Figure 2.

Figure 2. The book graphs B3 and B4, respectively.

The following theorem gives the edge characteristic polynomial and edge energy of book
graphs.

Theorem 2.9. (i) The edge characteristic polynomial of Bn is

x(x − (n − 1))(x − (n + 1))(x − 1)n−1(x + 2)n(x + 1)n−1.
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(ii) The edge energy of book graph is Ee(Bn) = 6n − 2.

Proof. (i) Consider the following n × (n + 1) matrix

A =


1 1 0 0 · · · 0
1 0 1 0 · · · 0
...

...
...

...
...

...
1 0 0 0 · · · 1

 .

It is easy to see that the edge adjacency matrix of Bn is the following (3n + 1)×(3n + 1)
matrix:

Ae(Bn) =

 J − I A 0
At 0 At

0 A J − I

 .

With simple computation, we see that

ϕe(x) = det(Ae(Bn)− xI)

= x(x − (n − 1))(x − (n + 1))(x − 1)n−1(x + 2)n(x + 1)n−1.

(ii) It follows from Part (i).

In the end of this paper, we present the edge adjacency matrix of two another kind of
graphs. For this purpose, we need the following matrix

B =


1 1 0 0 · · · 0
0 1 1 0 · · · 0
...

...
...

...
...

...
1 0 0 0 · · · 1

 .

For two graphs G = (V, E) and H = (W, F), the corona G ◦ H is the graph arising from the
disjoint union of G with |V| copies of H, by adding edges between the ith vertex of G and all
vertices of ith copy of H ( [13]).

It is not difficult to see that the edge adjacency matrices of wheel graphs Wn+1 = Cn + K1

and graphs Cn ◦ K1 are in the form stated in the following theorem.

Theorem 2.10. (i) The edge adjacency matrix of wheel graphs Wn+1 is the following 2n × 2n
matrix:

Ae(Wn) =

(
Ae(Cn) B

Bt J − I

)
.

(ii) The edge adjacency matrix of graphs Cn ◦ K1 is the following 2n × 2n matrix:

Ae(Cn ◦ K1) =

(
Ae(Cn) B

Bt 0

)
.
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