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Abstract. The Hosoya index Z(G) of a graph G is the total number of matchings in it. In this
paper, the recursive formulas of the Hosoya index of semitotal graph Q(G) and total graph T(G) for
certain graphs G are obtained. Moreover, we obtain the bounds of the Hosoya index of semitotal and
total graphs of a connected graph G.
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1 Introduction

In 1971, Haruo Hosoya introduced the Hosoya index of a graph G, denoted by Z(G), and
showed that certain Physico-chemical properties of saturated hydrocarbons are corrected
with Z(G) [10]. Some papers related to the chemical concepts of the Hosoya index can be
found in [7–9].

Let G = (V, E) be a simple connected graph with |V|= n vertices and |E|= m edges. Two
edges of G are called independent if they don’t have a common vertex in G. A k-matching of
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G is a set of k independent edges and the number of k-matching in G is denoted by m(G,k).
Let m(G,0) = 1 for any graph G. Z(G) is defined as follows

Z(G) =
⌊ n

2 ⌋

∑
k=0

m(G,k).

More results on the Hosoya index can be found in [1, 4, 12–15]. There are some derived
graphs of a connected graph G such as the subdivision graph S(G), the semitotal graph Q(G)

and the total graph T(G). In [17], the Hosoya index and matching polynomial of S(G) of a
graph G are determined in terms of the matchings. Note that S(G) is obtained by putting a
path of length two on each edge of the graph G [16].

In this paper, we deal with semitotal graphs and total graphs. The semitotal graph Q(G)

of the graph G is obtained by inserting a new vertex into each edge of G and joining these
pairs of new vertices on adjacent edges of G by an edge [16]. The total graph T(G) is a graph
obtained from the graph G which its vertex set containing the vertices and edges of G and
two vertices in T(G) are adjacent if they are either adjacent or incident in G [2, 16].

The neighborhood of the vertex u ∈ V in a graph G is defined as NG(u) = {v ∈ V|uv ∈ E}.
The number of edges incident to vertex u in G is denoted by deg(u). A Hamiltonian cycle in
a graph is a cycle that visits each vertex of the graph exactly once. Two graphs G1 and G2

which obtain the same number of vertices connected in the same way are said to be isomor-
phic and denoted as G1

∼= G2. A subgraph H of a graph G, denoted by H ⊆ G, is a graph with
vertex set V(H) ⊆ V(G) and edge set E(H) ⊆ E(G). The corona graph G1 ◦ G2 is obtained
of two graphs G1 and G2 by determining one copy of G1 and |V(G1)| copies of G2, in which
the ith vertex of the graph G1 is adjacent to every vertex in the ith copy of the graph G2. The
corona G ◦ K1, is formed from a copy of G, where for each vertex u ∈ V(G), a new vertex v
and a pendant edge uv are added [3].

In this paper, we study the Hosoya index of Q(G) and T(G). Furthermore, the lower and
upper bounds of the Hosoya index of semitotal and total graphs for the connected graph G
are determined.

2 The Hosoya index of Q(G) and T(G) of certain graphs

In this section, we obtain the results for computing Z(G) of the semitotal graph and the
total graph of some certain graphs. First, some lemmas that will be used in the proof of our
results are given.

Lemma 2.1. [6] Let G = (V, E) be a graph.

(i) If uv ∈ E(G), then Z(G) = Z(G − uv) + Z(G − {u,v}),
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(ii) If v ∈ V(G), then Z(G) = Z(G − v) + ∑u∈NG(v) Z(G − {u,v}),

(iii) If G1, G2, . . . , Gt are all components of G, then Z(G) = ∏t
i=1 Z(Gi).

Lemma 2.2. [6] Let Pn, Sn and Cn be the path, star and cycle of the order n, respectively. Then

(i) For any n > 0, then Z(Pn) = Fn+1 and Z(Sn) = n,

(ii) For any n ≥ 3, then Z(Cn) = Fn−1 + Fn+1,

where Fn denotes the Fibonacci number, defined by F0 = 0, F1 = 1 and Fn+1 = Fn + Fn−1.

The subdivision-related graph R(G) of G is the graph obtained by adding a new vertex
corresponding to each edge of G and joining the new vertex to the end vertices of the corre-
sponding edge. In other words, R(G) is obtained by replacing each edge of G with a triangle.
The following result is obtained for the Hosoya index on the graph R(G) [2, 16].

Lemma 2.3. [18] Let G be a simple graph with n vertices and R(G) be the graph defined above.
Then, the Hosoya index Z(R(G)) is as following

Z
(

R(G)
)
=

n

∏
i=1

(di + 1),

where (d1,d2, . . . ,dn) is the degree sequence of vertices of G.

Theorem 2.4. For any n ≥ 3, the Hosoya index of semitotal graph of Cn is equal to

Z
(
Q(Cn)

)
= 3n.

Proof. Let Cn be a cycle of order n with the vertices set {v1,v2, . . . ,vn}. The semitotal of Cn is
obtained by adding a new vertex v′i into each edge vivi+1 for 1 ≤ i ≤ n − 1 and v′n inserts on
edge vnv1 on cycle Cn. According to the definition the graph Q(G), the new vertices v′i and
v′i+1 are adjacent in Q(Cn) for 1≤ i ≤ n− 1 and the edge v′nv′1 ∈ E(Q(Cn)) (see Figure 1.). If we
consider the cycle C′

n with the vertices {v′1, . . . ,v′n}, then Figure 2 shows that Q(Cn) ≃ R(C′
n).

Therefore,
Z
(
Q(Cn)

)
= Z

(
R(C′

n)
)
.

By Lemma 2.3 and since the degree of any vertex v′i in C′
n equals to 2 for 1 ≤ i ≤ n, we have

Z
(

R(C′
n)
)
=

n

∏
i=1

(2 + 1) = 3n.

Thus, the proof completes.

Now we obtain a recursive formula of the Hosoya index of Kn ◦ K1. This result will be
used in the next results.
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Figure 1. The semitotal graph of Cn.

Proposition 2.5. For n ≥ 3,

Z(Kn ◦ K1) = 2Z(Kn−1 ◦ K1) + (n − 1)Z(Kn−2 ◦ K1), (1)

with the initial conditions Z(K1 ◦ K1) = 2 and Z(K2 ◦ K1) = 5.

Proof. Let Gn = Kn ◦ K1 and the complete graph Kn has vertices v1,v2, . . . ,vn that the vertex u
is adjacent to v1 in Kn ◦ K1. Using Lemma 2.1, we have

Z(Gn) = Z(Gn − v1) + Z(Gn − {v1,u}) +
n

∑
i=2

Z(Gn − {v1,vi})

= Z(Gn−1) + Z(Gn−1) + (n − 1)Z(Gn−2).

Therefore, for n ≥ 3,

Z(Kn ◦ K1) = 2Z(Kn−1 ◦ K1) + (n − 1)Z(Kn−2 ◦ K1).

For n = 1, G1 = K1 ◦ K1 and G2 = K2 ◦ K1 are isomorphic with paths P2 and P4 respectively,
that using Lemma 2.2(i), Z(G1) = 2 and Z(G2) = 5. So, the result holds.

Theorem 2.6. For star graph Sn of order n ≥ 3,

Z
(
Q(Sn)

)
= (n + 2)Z(Kn−1 ◦ K1) + (n − 1)Z(Kn−2 ◦ K1),

with the initial conditions Z(K1 ◦ K1) = 2 and Z(K2 ◦ K1) = 5.

Proof. Let Sn be a star graph of order n with the vertices set {v1,v2, . . . ,vn, x} in which x be the
central vertex with deg(x) = n. Let v′i be the new vertices in the graph Q(Sn) for i = 1,2, . . . ,n.
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According to the structure of the graph Q(Sn), the induces subgraph of vertices {v′1,v′2, . . . ,v′n}
is a complete graph in Q(Sn). Therefore, using Lemma 2.1, we have

Z
(
Q(Sn)

)
= Z

(
Q(Sn)− x

)
+

n

∑
i=1

Z
(
Q(Sn)− {x,v′i}

)
= Z(Kn ◦ K1) + nZ(Kn−1 ◦ K1).

Using Proposition 2.5, we get

Z
(
Q(Sn)

)
= Z(Kn ◦ K1) + nZ(Kn−1 ◦ K1)

= (n + 2)Z(Kn−1 ◦ K1) + (n − 1)Z(Kn−2 ◦ K1).

Let u be the central vertex of degree n in Sn and v be the vertex of degree n in S′
n. The

Bistar graph Bn,n is obtained by adding an edge joining u and v of Sn and S′
n.

Corollary 2.7. If Bn,n is Bistar graph, then

Z
(
Q(Bn,n)

)
= Z

(
Q(Sn)

)2
+ 2nZ

(
Q(Sn−1)

)
Z
(
Q(Sn)

)
.

Proof. Assume that Bistar graph Bn,n is obtained by adding two central vertices u and v of
two stars Sn and S′

n. Let x be the new vertex on the edge uv in the graph Q(Bn,n) that is
adjacent to all of the new inserting vertices. Therefore, using Lemma 2.1,

Z
(
Q(Bn,n)

)
= Z

(
Q(Bn,n)− x

)
+ ∑

vi∈NQ(Bn,n)(x)
Z
(
Q(Bn,n)− {x,vi}

)
Since deg(x) = 2n and the graph Q(Bn,n) \ {x} contains two graphs Q(Sn), we have

Z
(
Q(Bn,n)

)
= Z

(
Q(Sn)

)2
+ 2nZ

(
Q(Sn−1)

)
Z
(
Q(Sn)

)
.

In the next theorem, we give the recursive formula for the Hosoya index of Q(Pn).

Theorem 2.8. Let Pn be a path of order n ≥ 2. Then

Z
(
Q(Pn)

)
= 3Z

(
Q(Pn−1)

)
with initial condition Z

(
Q(P1)

)
= 1.
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Figure 2. The graph Gn−1 in Theorem 2.8.

Proof. Assume that Pn is the path of order n with vertices set {v1,v2, . . . ,vn} and the new
vertices on edges of Q(Pn) be {v′1,v′2, . . . ,v′n−1}. We denote the graph obtained from deleting
vertex v1 in the semitotal Q(Pn) by Gn−1 (see Figure 2.). Therefore, using Lemma 2.1(ii) and
the structure of Figure 2.,

Z
(
Q(Pn)

)
= Z

(
Q(Pn)− v1

)
+ Z

(
Q(Pn)− {v1,v′1}

)
= Z(Gn−1) + Z

(
Q(Pn−1)

)
. (2)

According to Figure 2., we compute Z(Gn−1) with considering v′1 and NGn−1(v
′
1) = {v2,v′2}

for n ≥ 2.
Using Lemma 2.1(ii), we have

Z(Gn−1) = Z(Gn−1 − v′1) + Z(Gn−1 − {v′1,v2}) + Z(Gn−1 − {v′1,v′2})
= Z(Gn−2) + Z

(
Q(Pn−1)

)
+ Z

(
Q(Pn−2)

)
, (3)

For n = 0, Z(G0) = Z
(
Q(P0)

)
= 1. Clearly, Z

(
Q(P1)

)
= 1 and for n = 2, Z(G1) = Z(P2) = 2

and Z
(
Q(P2)

)
= Z(P3) = 3. For n ≥ 3, substituting for Z(Gn−1) in equation (2) by (3) yields

Z
(
Q(Pn)

)
= Z(Gn−2) + 2Z

(
Q(Pn−1)

)
+ Z

(
Q(Pn−2)

)
.

Then, by substituting for Z(Gn−2) using equation (2), we get

Z
(
Q(Pn)

)
= 3Z

(
Q(Pn−1)

)
.

Theorem 2.9. For n ≥ 3, the Hosoya index of the total graph of Sn is as following

Z
(
T(Sn)

)
= 2(n + 1)Z(Kn−1 ◦ K1) + (n2 − 1)Z(Kn−2 ◦ K1),

with the initial conditions Z(K1 ◦ K1) = 2 and Z(K2 ◦ K1) = 5.

Proof. In an analogous manner and labeling in the graph Sn and the new vertices set as The-
orem 2.6 and according to the definition of the total graph, the vertex x is adjacent to all
vertices vi and v′i in T(Sn). Thus, using Lemma 2.1,

Z
(
T(Sn)

)
= Z

(
T(Sn)− x

)
+

n

∑
i=1

Z
(
T(Sn)− {x,vi}

)
+

n

∑
i=1

Z
(
T(Sn)− {x,v′i}

)
= Z

(
Kn ◦ K1

)
+ nZ

(
Kn−1 ◦ K1

)
+

n

∑
i=1

Z
(
T(Sn)− {x,v′i}

)
.
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According to the structure of T(Sn), the graph Gi = T(Sn) \ {x,v′i} is the corona graph Kn ◦K1

for i = 1,2, · · · ,n such that pendant edge to the vertex v′i is deleted. So, with selecting the
vertex vi and since deg(v′i) = n − 1, we have

Z(G′
i) = Z(G′

i − v′i) +
n−1

∑
i=1
i ̸=j

Z(G′
i − {v′i,v

′
j})

= Z(Kn−1 ◦ K1) + (n − 1)Z(Kn−2 ◦ K1).

Therefore by applying Proposition 2.5, we get

Z
(
T(Sn)

)
= Z(Kn ◦ K1) + nZ(Kn−1 ◦ K1) + nZ(Kn−1 ◦ K1) + n(n − 1)Z(Kn−2 ◦ K1)

= Z(Kn ◦ K1) + 2nZ(Kn−1 ◦ K1) + n(n − 1)Z(Kn−2 ◦ K1)

= 2(n + 1)Z(Kn−1 ◦ K1) + (n2 − 1)Z(Kn−2 ◦ K1).

The following corollary is easily obtained by Lemma 2.1, Proposition 2.5 and Theorem
2.9.

Corollary 2.10. The Hosoya index of T(Bn,n), for n ≥ 3 is as following

Z
(
T(Bn,n)

)
= Z

(
T(Sn)

)2
+ Z(Kn ◦ K1)

2 + 2Z(Kn ◦ K1)Z(T(Sn))

+ 2n
[

Z
(
T(Sn−1)

)
Z(T(Sn)) + Z(Kn−1 ◦ K1)Z(Kn ◦ K1)

]
.

3 Bounds on Hosoya index of semitotal graphs and total graphs

In this section, we obtain lower and upper bounds on the Hosoya index of semitotal and
total graphs of a connected graph G. In order to prove our results, we recall the following
lemmas.

Lemma 3.1. [11] If H is a subgraph of G, then Z(H) ≤ Z(G) with equality if and only if E(G) =

E(H).

Lemma 3.2. [11] Let G be a connected graph of size m. Then

m + 1 ≤ Z(G) ≤ 1√
5

[(1 +
√

5
2

)m+2
−

(1 −
√

5
2

)m+2
]

.

It is easy to achieve the following inequality using induction on n. If n ≥ 1 and b < a, then

an − bn ≤ nan−1(a − b). (4)
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Lemma 3.3. [2] For any connected graph G with n vertices and m edges, n − 1 ≤ m ≤ n(n−1)
2 .

Lemma 3.4. [2] Let Tn, Gk and Kr,s be a tree, a k-regular graph and a bipartite graph of order n,
respectively. If m(G) denotes the number of edges of graph G, then

(i) m(Tn) = n − 1,

(ii) m(Gk) =
nk
2 ,

(iii) m(Kr,s) ≤ n2

4 .

Lemma 3.5. [5] Let T(G) = (V′, E′) be a total graph for the given graph G = (V, E). Then

(i) |V′| = |V|+ |E|,

(ii) |E′| ≤ |E|
(
|V|+ 1

)
.

Lemma 3.6. [5] The total graph of a graph G is regular if and only if G is regular.

Theorem 3.7. Let G be a simple and connected graph with a Hamiltonian cycle of order n ≥ 3. Then

3n ≤ Z
(
Q(G)

)
≤ (n − 1)n.

The first equality holds if and only if G is a cycle of order n.

Proof. Since G has the Hamiltonian cycle thus, by definition there exists the cycle Cn in graph
G. According to the structure semitotal graph of G, it is easy to see that Q(Cn) ⊆ Q(G).
Therefore, using Lemma 3.1, Z

(
Q(Cn)

)
≤ Z

(
Q(G)

)
. Thus, the lower bound holds by Theo-

rem 2.4. Since cycle Cn is the smallest Hamiltonian graph of order n, the equality holds.
For the upper bound, we can consider Q ⊆ Kn for any connected graph G in which Kn is the
complete graph. By definition, we can have Q(G) ⊆ Q

(
R(Kn)

)
. Therefore, using Lemma 3.1

and Lemma 2.3
Z
(
Q(G)

)
≤ (n − 1)n.

Thus, the proof completes.

Theorem 3.8. Let G be a connected graph of order n ≥ 1. Then

2n − 1 ≤ Z
(
T(G)

)
≤ (a + 1)

(1 +
√

5
2

)a
,

where a = n(n2−1)
2 + 1.

Proof. Assume that G is a connected graph with n vertices and of size m. Since G is a con-
nected graph then, T(G) is a connected graph and by Lemma 3.5(i), the number of vertices of
T(G) is n′ = n + m and for the number of edges of T(G), we have m′ ≤ m(n + 1). By Lemma
3.2,

m′ + 1 ≤ Z
(
T(G)

)
≤ 1√

5

[(1 +
√

5
2

)m′+2
−

(1 −
√

5
2

)m′+2
]

.
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By Lemma 3.3, m′ ≥ n′ − 1 and m ≥ n − 1. Thus, m′ ≥ 2n − 2. Therefore,

Z
(
T(G)

)
≥ m′ + 1 ≥ 2n − 1.

For the upper bound, we use inequality (4). So

Z
(
T(G)

)
≤ 1√

5

[(1 +
√

5
2

)m′+2
−

(1 −
√

5
2

)m′+2
]

≤ 1√
5
(m′ + 2)

(1 +
√

5
2

)m′+1
((1 +

√
5

2

)
−

(1 −
√

5
2

))

= (m′ + 2)
(1 +

√
5

2

)m′+1
. (5)

Using Lemma 3.5(ii) and since m ≤ n(n−1)
2 , we have

Z
(
T(G)

)
≤

(n(n2 − 1)
2

+ 2
)(1 +

√
5

2

) n(n2−1)
2 +1

.

By considering a = n(n2−1)
2 + 1, the proof completes.

Corollary 3.9. Let G be a Tree Tn of order n. Then

2n − 1 ≤ Z
(
T(G)

)
≤ (n2 + 1)

(1 +
√

5
2

)n2

.

Proof. Let G be a tree Tn with n vertices. The lower bound follows from Theorem 3.8. For the
upper bound, we consider, inequality 5 as following,

Z
(
T(G)

)
≤ (m′ + 2)

(1 +
√

5
2

)m′+1
,

where m′ is the number of edges of the total graph of G. Using Lemma 3.5(ii) and Lemma

3.4(i) we have, m′ ≤ n2 − 1. So, Z
(
T(G)

)
≤ (n2 + 1)

(
1+

√
5

2

)n2

.

Corollary 3.10. Let G be a bipartite graph Kr,s of order n. Then

2n − 1 ≤ Z
(
T(G)

)
≤ (b + 1)

(1 +
√

5
2

)b
,

where b = n2

4 (n + 1).

Proof. Let G be a bipartite graph Kr,s. Similar to the proof of the Theorem 3.8, we only prove
the upper bound. Since G is the bipartite graph of order n then, for the graph T(G), we have
m′ ≤ n2

4 (n + 1).
Using inequality (5),

Z
(
T(G)

)
≤

(n2

4
(n + 1) + 2

)(1 +
√

5
2

) n2
4 (n+1)+1

.

With considering b = n2

4 (n + 1), the result holds.
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For a bipartite graph of order n ≥ 2, the upper bound of Corollary 3.10 is better than
Theorem 3.9. Because it is easy to see that b ≤ a.

Corollary 3.11. Let Gk be a k-regular graph of order n. Then

c ≤ Z
(
T(Gk)

)
≤ (c + 1)

(1 +
√

5
2

)c
,

where c = nk
2 (k + 2) + 1.

Proof. Let Gk be a k-regular graph of order n and size m. It is easy to see that the graph T(Gk)

is a 2k-regular graph of order n′ = n+m [5]. Using Lemma 3.5(ii), m = nk
2 and m′ = nk

2 (k + 2).
According to Theorem 3.8, we have

m′ ≤ m′ + 1 ≤ Z
(
T(Gk)

)
≤ (m′ + 2)

(1 +
√

5
2

)m′+1
.

By replacing m′ = nk
2 (k + 2) and considering c = nk

2 (k + 2) + 1, the result completes.

Calculating the Hosoya index of total graphs of path Pn, cycle Cn and complete graph Kn

is difficult due to their structure. But, we can find the bound for these graphs. The following
corollary is an easy consequence of Theorem 3.8.

Note, The number edges of the total graph of Pn, Cn and Kn is m′(T(Pn)) = 4n − 5,

m′(T(Cn)) = 4n and m′(T(Kn)) =
n(n2−1)

2 , respectively [5].

Theorem 3.12. The Hosoya index of total graphs of Pn, Cn and Kn is as follows

(i) 4n + 1 ≤ Z
(
T(Cn)

)
≤ (4n + 1)

(
1+

√
5

2

)4n
,

(ii) α ≤ Z
(
T(Pn)

)
≤ (α + 1)

(
1+

√
5

2

)α
,

where α = 4(n − 1).

(iii) β ≤ Z
(
T(Kn)

)
≤ (β + 1)

(
1+

√
5

2

)β
,

where β = n(n2−1)
2 + 1.

Theorem 3.13. Let G be a connected graph of order n ≥ 1. Then

2n − 1 ≤ Z
(
Q(G)

)
≤ (λ + 1)

(1 +
√

5
2

)λ
,

where λ = n2(n−1)
2 .

Proof. Let G be the connected graph of order n and size m. According to the definition of
the semitotal graph Q(G) and the total graph T(G), the number of edges in Q(G) is equal to
m′′ = E(T(G))− m. So using Lemma 3.5(ii), m′′ ≤ mn.
Similar to the proof of Theorem 3.8, the result completes.
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